Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:37:21.392Z Has data issue: false hasContentIssue false

Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response

Published online by Cambridge University Press:  19 April 2006

K. B. M. Q. Zaman
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77004
A. K. M. F. Hussain
Affiliation:
Department of Mechanical Engineering, University of Houston, Texas 77004

Abstract

Hot-wire and flow-visualization studies have been carried out in three air jets subjected to pure-tone acoustic excitation, and the instability, vortex roll-up and transition as well as jet response to the controlled excitation have been investigated. The centreline fluctuation intensity can be enhanced by inducing stable vortex pairing to a level much higher than even that at the ‘preferred mode’, but can also be suppressed below the unexcited level under certain conditions of excitation. The conditions most favourable to vortex pairing were determined as a function of the excitation Strouhal number, the Reynolds number (ReD), and the initial shear-layer state, i.e. laminar or turbulent. It is shown that the rolled-up vortex rings undergo pairing under two distinct conditions of excitation: ‘the shear layer mode’ when the Strouhal number based on the initial shear-layer momentum thickness (Stθ) is about 0·012, and ‘the jet column mode’ when the Strouhal number based on the jet diameter (StD) is about 0·85. The former involves pairing of the near-exit thin vortex rings when the initial boundary layer is laminar, irrespective of the value of StD. The latter involves pairing of the thick vortex rings at x/D ≅ 1·75, irrespective of Stθ or whether the initial boundary layer is laminar or turbulent. For laminar exit boundary layer, pairing is found to be stable, i.e., occurring regularly in space and time, for ReD < 5 × 104, but becomes intermittent with increasing ReD or fluctuation intensity in the initial boundary layer.

The trajectories of the vortex centres and their convection velocities during a pairing event have been recorded through phase-locked measurements. In the presence of stable vortex pairing, the time average profiles of fluctuation intensities and Reynolds stress show noticeable deviations from those in the unexcited jet. The vortex pairing phenomenon produce considerably larger excursions of the $\widetilde{uv}(t)$ signal than the time-average Reynolds stress reveals, suggesting that only certain phases of the pairing process may be important in entrainment, and production of Reynolds stress and jet noise.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechert, D. & Pfizenmaier, E. 1975 J. Sound Vib. 43, 581.
Becker, H. A. & Massaro, T. A. 1968 J. Fluid Mech. 31, 435.
Beguier, C., Giralt, F., Fulachier, L. & Keffer, J. F. 1978 Structure and Mechanisms of Turbulence II (ed. H. Fiedler), Lecture notes in Physics, vol. 76, p. 22. Springer.
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 J. Fluid Mech. 19, 591.
Browand, F. K. 1966 J. Fluid Mech. 26, 281.
Browand, F. K. & Laufer, J. 1975 Turb. Liquid 5, 333344. Univ. of Missouri-Rolla.
Browand, F. K. & Wiedmast, P. D. 1976 J. Fluid Mech. 76, 127.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Chan, Y. Y. 1974 Phys. Fluid 17, 1667.
Clark, A. R. 1979 Ph.D. thesis, Univ. of Houston.
Crighton, D. G. & Gaster, M. 1976 J. Fluid Mech. 77, 397.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547.
Davies, P. O. A. L. & Baxter, D. R. J. 1978 Structure and Mechanisms of Turbulence I (ed. H. Fiedler), Lecture notes in Physios, vol. 75, p. 125. Springer.
Freymuth, P. 1960 J. Fluid Mech. 25, 683.
Hill, B. G., Jenkins, B. C. & Gilbert, B. L. 1975 Grumman Res. Dept. Rep. RE-508.
Hussain, A. K. M. F. & Clark, A. R. 1977 Phys. Fluids 20, 1416.
Hussain, A. K. M. F. & Clark, A. R. 1980 J. Fluid Mech. (to appear).
Hussain, A. K. M. F., Kleis, S. J. & Sokolov, M. 1980 J. Fluid Mech. 98, 97.
Hussain, A. K. M. F. & Reynolds, W. C. 1970 J. Fluid Mech. 41, 241.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1975 Proc. 3rd Interagency Symp. Trans. Noise, Univ. of Utah, pp. 314325.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1978 J. Fluid Mech. 87, 349.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1980 J. Fluid Mech. 101, 493.
Hussain, A. K. M. F. & Zedan, M. F. 1978 Phys. Fluids 21, 1100.
Kelly, R. E. 1967 J. Fluid Mech. 27, 657.
Ko, N. W. M. & Davies, P. O. A. L. 1971 J. Fluid Mech. 50, 49.
Kovasznay, L. S. G. 1978 Structure and Mechanisms of Turbulence I (ed. H. Fiedler), Lecture notes in Physics, vol. 75, p. 1. Springer.
Lau, J. C., Fisher, M. J. & Fuchs, H. V. 1972 J. Sound Vib. 22, 379.
Michalke, A. 1965a J. Fluid Mech. 23, 521.
Michalke, A. 1965b J. Fluid Mech. 22, 351.
Michalke, A. 1972 Prog. Aero. Sci. 12, 213.
Miksad, R. W. 1972 J. Fluid Mech. 56, 695.
Moore, C. J. 1977 J. Fluid Mech. 80, 321.
Petersen, R. A. 1978 J. Fluid Mech. 89, 469.
Petersen, R. A., Kaplan, R. E. & Laufer J. 1974 N.A.S.A. Contractor Rep. no. 134733.
Pfizenmaier, E. 1973 Doktor-Ingenieur thesis, Technischen Universitaet Berlin.
Rockwell, D. O. 1972 J. Appl. Mech. 39, 883.
Roshko, A. 1976 A.I.A.A. J. 10, 1349.
Saffman, P. G. 1978 Structure and Mechanisms of Turbulence II (ed. H. Fiedler), Lectures notes in Physics, vol. 76, p. 273. Springer.
Sato, H. 1960 J. Fluid Mech. 7, 53.
Sokolov, M., Hussain, A. K. M. F., Kleis, S. J. & Husain, Z. D. 1980 J. Fluid Mech. 98, 65.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press. (Reprinted in 1976.)
Vlasov, Y. V. & Ginevskiy, A. S. 1974 N.A.S.A. TTF-15, 721.
Winant, C. D. & Browand, F. K. 1974 J. Fluid Mech. 63, 237.
Yule, A. J. 1978 J. Fluid Mech. 89, 413.
Zaman, K. B. M. Q. 1978 Ph.D. thesis, Univ. of Houston.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 J. Fluid Mech. (to appear).