Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T00:23:05.005Z Has data issue: false hasContentIssue false

Unsteady transonic nozzle flow of dense gases

Published online by Cambridge University Press:  26 April 2006

A. Kluwick
Affiliation:
Institut für Strömungslehre und Wärmeübertragung, Technische Universität Wien, A-1040 Wien, Austria
St. Scheichl
Affiliation:
Institut für Strömungslehre und Wärmeübertragung, Technische Universität Wien, A-1040 Wien, Austria

Abstract

Vapours of retrograde fluids, i.e. media with large values of the specific heats, may have the remarkable property that sonic conditions are reached three times rather than once during isentropic expansion or compression. As a result, the acceleration of such a fluid through a converging-diverging Laval nozzle under steady flow conditions may lead to the occurrence of an expansion shock discontinuity. Theoretical considerations then suggest that nozzles with two throats should be designed to achieve a full shock-free subsonic-supersonic expansion.

In this study the unsteady flow of a dense, retrograde gas through slender nozzles (with one and two throats) is considered. The combination of the Navier-Stokes equations supplemented with a non-classical equation of state for the fluid yields a generalized wave equation, with its validity restricted to flow conditions near the critical value M = 1. This equation is used to study the transition process which sets in if a steady subsonic solution is perturbed by lowering the pressure at the end of the nozzle.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson Jr, T. C. & Messiter, A. F. 1988 Asymptotic methods for internal transonic flows. Transonic Symposium; Theory, Application and Experiment, NASA Conf. Publ. 3020, vol. 1, pp. 261291.
Adamson Jr, T. C., Messiter, A. F. & Richey, G. K. 1974 On the matching of solutions for unsteady transonic nozzle flows. Arch. Mech. Stosow 26, 617628.Google Scholar
Adamson Jr, T. C. & Richey, G. K. 1973 Unsteady transonic flows with shock waves in two-dimensional channels. J. Fluid Mech. 60, 363382.Google Scholar
Angelino, G. & Invernizzi, C. 1993 Cyclic methylsiloxanes as working fluids for space power cycles. J. Solar Engng 115, 130137.Google Scholar
Bethe, H. A. 1942 The theory of shock waves for an arbitrary equation of state. Office Sci. Res. Dev. Rep. 545.
Burnside, B. M. 1973 Thermodynamic properties of five halogenated hydrocarbon vapour cycle working fluids. J. Mech. Engng Sci. 15, 132143.Google Scholar
Chandrasekar, D. & Prasad, P. 1991 Transonic flow of a fluid with positive and negative nonlinearity through a nozzle. Phys. Fluids A 3, 427438.Google Scholar
Cramer M. S. 1991 Nonclassical dynamics of classical gases. In Nonlinear Waves in Real Fluids (ed. A. Kluwick), pp. 91145. Springer.
Cramer, M. S. & Crickenberger, A. B. 1991 The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325355.Google Scholar
Cramer, M. S. & Fry, R. N. 1993 Nozzle flows of dense gases. Phys. Fluids A 5, 12461259.Google Scholar
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.Google Scholar
Cramer, M. S. & Tarkenton, G. M. 1992 Transonic flows of Bethe-Zel'dovich-Thompson fluids. J. Fluid Mech. 240, 197228.Google Scholar
Curran, H. M. 1981 Use of organic working fluids in rankine engines. J. Energy 5, 218223.Google Scholar
Kluwick, A. 1972 Schallnahe Wellenausbreitungsvorgänge in schlanken Düsen. Acta Mechanica 15, 105119.Google Scholar
Kluwick, A. 1991 Small-amplitude finite-rate waves in fluids having both positive and negative nonlinearity. In Nonlinear Waves in Real Fluids (ed. A. Kluwick), pp. 143. Springer.
Kluwick, A. 1993 Transonic nozzle flow of dense gases. J. Fluid Mech. 247, 661688 (referred to herein as I).Google Scholar
Kluwick, A. & Czemetschka, B. 1990 Kugel- und Zylinderwellen in Medien mit positiver und negativer Nichtlinearität. Z. Angew. Math. Mech. 70, 207208.Google Scholar
Messiter, A. F. & Adamson Jr, T. C. 1975 On the flow near a weak shock wave downstream of a nozzle throat. J. Fluid Mech. 69, 97108.Google Scholar
Oswatitsch, K. & Rothstein, W. 1942 Das Strömungsfeld in einer Laval-Düse. Jb. Dtsch. Lufo. I, 91102.Google Scholar
Ryshov, O. S. 1967 Zh. Vychisl. Mat. Mat. Fyz. 7, 859866. Engl. transl: Operation of laval nozzles in undesigned [i.e. off-design] modes. USSR Comp. Math. Math. Phys. 7, No. 4, 187–195.
Ryzhov, O. S. 1978 Viscous transonic flows. Ann. Rev. Fluid Mech. 10, 6592.Google Scholar
Smith, I. K. 1981 The choice of working fluids for power recovery from waste heat streams. Paper C70, Trans. Conf. on Organic Fluids for Waste Recovery in Ships and Industry, London.
Szaniawski, A. 1965 Transonic approximations to the flow through a nozzle. Arch. Mech. Stosow 17, 7985.Google Scholar
Thompson, P. A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14, 18431849.Google Scholar
Thompson, P. A. 1991 Liquid-vapour adiabatic phase changes. In Nonlinear Waves in Real Fluids (ed. A. Kluwick), pp. 147213. Springer.
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187207.Google Scholar
Tomotika, S. & Tamada, K. 1950 Studies on two-dimensional transonic flows of compressible fluids – Part I. Q. Appl. Maths 7, 381397.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley and Sons
Zel'dovich, Ya. B. 1964 On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363364.Google Scholar
Zourner, W. & Blumenberg, J. 1989 Der Organische Rankine-Prozeß zur solardynamischen Energieerzeugung im Weltraum. Z. Flugwiss. Weltraumforsch. 13, 260270.Google Scholar