Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T19:01:48.575Z Has data issue: false hasContentIssue false

A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate

Published online by Cambridge University Press:  25 April 1999

SHI-JUN LIAO
Affiliation:
School of Naval Architecture & Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; e-mail: [email protected]

Abstract

We apply a new kind of analytic technique, namely the homotopy analysis method (HAM), to give an explicit, totally analytic, uniformly valid solution of the two-dimensional laminar viscous flow over a semi-infinite flat plate governed by f‴(η)+αf(η)f″(η)+β[1−f2(η)]=0 under the boundary conditions f(0)=f′(0)=0, f′(+∞)=1. This analytic solution is uniformly valid in the whole region 0[les ]η<+∞. For Blasius' (1908) flow (α=1/2, β=0), this solution converges to Howarth's (1938) numerical result and gives a purely analytic value f″(0)=0.332057. For the Falkner–Skan (1931) flow (α=1), it gives the same family of solutions as Hartree's (1937) numerical results and a related analytic formula for f″(0) when 2[ges ]β[ges ]0. Also, this analytic solution proves that when −0.1988[les ]β0 Hartree's (1937) family of solutions indeed possess the property that f′→1 exponentially as η→+∞. This verifies the validity of the homotopy analysis method and shows the potential possibility of applying it to some unsolved viscous flow problems in fluid mechanics.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)