Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:18:58.200Z Has data issue: false hasContentIssue false

Unified geometric and analytical treatment of magnetogasdynamic shocks. Part 1. General solutions and theorems

Published online by Cambridge University Press:  29 March 2006

Lee A. Bertram
Affiliation:
Department of Engineering Mechanics and Engineering Research Institute, Iowa State University, Ames

Abstract

In this paper, the first of two parts on solutions to the non-relativistic de Hoffmann-Teller relations, a unified notation is developed and used to produce new analytical solutions for one-dimensional unsteady and two-dimensional crossed-fields representations. A simple numerical solution method for the non-aligned two-dimensional representation is also included. These solutions are explicit in the upstream parameters and a single strength parameter. Unification of reality, entropy and evolutionary conditions is also carried out. The resulting single criterion is used to derive algorithms by which the correct solution is obtained, in every case without previous computation and elimination of non-physical solutions. Classifications of the solutions are discussed in relation to previous schemes.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhiezer, A. IA., Lyubarskücar;, G. Ia. & Polovin, R. V. 1958 Zh. Eksp. Teor. Fiz. 35, 731. (Trans. in Soviet Phys. J.E.T.P. 8, 507.
Bazer, J. & Ericson, W. B. 1959 Astrophys. J. 129, 758.
Bazer, J. & Fleishman, O. 1959 Phys. Fluids, 2, 366.
Bertram, L. A. 1973 J. Plasma Phys. in press.
DE Hoffmann, F. & Teller, E. 1950 Phys. Rev. 80, 692.
Ericeon, W. B. & Bazer, J. 1960 Phys. Fluids, 3, 631.
Friedrichs, K. O. 1954 Los Alamos Rep. Lams-210.5 (distributed 1957).
Friedrichs, K. O. & Kranzer, H. 1958 New York Univ. Courant Inst. Math. Sci. Rep. NYO-6486-VIII.
Germain, P. 1959 O.N.E.R.A. Publ. no. 97. (English version: see Rev. Mod. Phya. 32, 951.
Henrici, P. 1964 Elements of Numerical Analysis, p. 77. Wiley.
Herlofson, N. 1950 Nature, 165, 1020.
Jeffrey, A. & Taniuti, T. 1964 Non-linear Wave Propagation. with Applications to Physics and Magnetohydrodynanaics, p. 223. Academic.
Kulikovskivi, A. G. & Lyubimov, G. A. 1962 Magnitnaya Cfidrodinamika. Fizmatgiz. (Trans : see 1965 Magnetohydrodynamics. Addison-Wesley.)
Lüst, R. 1955 Z. Naturf. 10, 125.
Lynn, Y. M. 1962 Phys. Fluids, 5, 626.
Lynn, Y. M. 1966 Phys. Fluids, 9, 314.
Lynn, Y. M. 1971 J. Plasma Phys. 6, 283.
Mccune, J. E. & Resler, E. L. 1960 J. Aerospace Sci. 27, 493.
Morioka, S. & Spreiter, J. R. 1969 J. Plasma Phys. 3, 81.
Polovin, R. V. 1961 Soviet Phys.-Uspekhi, 3, 677.
Sears, W. R. 1900 Rev. Mod. Phys. 32, 701.
Shercliff, J. A. 1960 J. Fluid Mech. 9, 481.
Taniuti, T. 1962 Prog. Theor. Phys. (Kyoto), 28, 756.
VAN DE Hulst, H. C. 1951 In Problems of Cosmical Aerodynamics, p. 46. Dayton, Ohio: Central Air Documents Office.
Weitzner, H. 1961 Phys. Fluids, 4, 1238.