Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T01:58:19.320Z Has data issue: false hasContentIssue false

Undulatory swimming in non-Newtonian fluids

Published online by Cambridge University Press:  06 November 2015

Gaojin Li
Affiliation:
School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
Arezoo M. Ardekani*
Affiliation:
School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
*
Email address for correspondence: [email protected]

Abstract

We numerically investigate the effects of non-Newtonian fluid properties, including shear thinning and elasticity, on the locomotion of Taylor’s swimming sheet with arbitrary amplitude. Our results show that elasticity hinders the swimming speed, but a shear-thinning viscosity in the absence of elasticity enhances the speed. The combination of the two effects, modelled using a Giesekus constitutive equation, hinders the swimming speed. We find that the swimming speed of an infinitely long waving sheet in an inelastic shear-thinning fluid has a maximum, whose value depends on the sheet undulation amplitude and the fluid rheological properties. The power consumption, on the other hand, follows a universal scaling law.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, H. C. & Turner, L. 1979 Movement of microorganisms in viscous environments. Nature 278, 349351.CrossRefGoogle ScholarPubMed
Bird, R. B., Armstrong, R. C., Hassager, O. & Curtiss, C. F. 1977 Dynamics of Polymeric Liquids. Wiley.Google Scholar
Brokaw, C. J. 1965 Non-sinusoidal bending waves of sperm flagella. J. Expl Biol. 43, 155169.CrossRefGoogle ScholarPubMed
Carreau, P. J., Dekee, D. C. R. & Chhabra, R. P. 1997 Rheology of Polymeric Systems. Hanser.Google Scholar
Dasgupta, M., Liu, B., Fu, H. C., Berhanu, M., Breuer, K. S., Powers, T. R. & Kudrolli, A. 2013 Speed of a swimming sheet in Newtonian and viscoelastic fluids. Phys. Rev. E 87, 013015.Google Scholar
Gagnon, D. A., Keim, N. C. & Arratia, P. E. 2014 Undulatory swimming in shear-thinning fluids: experiments with Caenorhabditis elegans . J. Fluid Mech. 758, R3.Google Scholar
Giesekus, H. 1982 A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11, 69109.Google Scholar
Guénette, R. & Fortin, M. 1995 A new mixed finite element method for computing viscoelastic flows. J. Non-Newtonian Fluid Mech. 60, 2752.Google Scholar
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. 2004 Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95108.CrossRefGoogle ScholarPubMed
Harman, M. W., Dunham-Ems, S. M., Caimano, M. J., Belperron, A. A., Bockenstedt, L. K., Fu, H. C., Radolf, J. D. & Wolgemuth, C. W. 2012 The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl. Acad. Sci. USA 109, 3059.Google Scholar
Hwang, S. H., Litt, M. & Forsman, W. C. 1969 Rheological properties of mucus. Rheol. Acta 8, 438448.Google Scholar
Katz, D. F. 1974 On the propulsion of micro-organisms near solid boundaries. J. Fluid Mech. 64, 3349.Google Scholar
Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B. & Stoodley, P. 2002 Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol. Bioengng 80, 289296.CrossRefGoogle ScholarPubMed
Lauga, E. 2007 Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104.Google Scholar
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.Google Scholar
Li, G. & Ardekani, A. M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90, 013010.CrossRefGoogle ScholarPubMed
Li, G., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53, 911926.Google Scholar
Liu, B., Powers, T. R. & Breuer, K. S. 2011 Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl Acad. Sci. USA 108, 1951619520.Google Scholar
Magariyama, Y. & Kudo, S. 2002 A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Nature Rev. Microbiol. 83, 733739.Google Scholar
Martinez, V. A., Schwarz-Linek, J, Reufer, M., Wilson, L. G., Morozov, A. N. & Poon, W. C. 2014 Flagellated bacterial motility in polymer solutions. Proc. Natl Acad. Sci. USA 111, 1777117776.CrossRefGoogle ScholarPubMed
Montecucco, C. & Rappuoli, R. 2001 Living dangerously: how Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol. 2, 457466.CrossRefGoogle ScholarPubMed
Montenegro-Johnson, T. D. & Lauga, E. 2014 Optimal swimming of a sheet. Phys. Rev. E 89, 060701.Google Scholar
Montenegro-Johnson, T. D., Smith, A. A., Smith, D. J., Loghin, D. & Blake, J. R. 2012 Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111.Google Scholar
Montenegro-Johnson, T. D., Smith, D. J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 25, 081903.CrossRefGoogle Scholar
Riley, E. E. & Lauga, E. 2014 Enhanced active swimming in viscoelastic fluids. Europhys. Lett. 108, 34003.Google Scholar
Schneider, W. R. & Doetsch, R. N. 1974 Effect of viscosity on bacterial motility. J. Bacteriol. 117, 696701.Google Scholar
Shen, X. N. & Arratia, P. E. 2011 Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106, 208101.CrossRefGoogle ScholarPubMed
Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. 1992 Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139142.Google Scholar
Spagnolie, S. E., Liu, B. & Powers, T. R. 2013 Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes. Phys. Rev. Lett. 111, 068101.Google Scholar
Suarez, S. S. & Pacey, A. A. 2006 Sperm transport in the female reproductive tract. Human Reprod. Update 12, 2337.CrossRefGoogle ScholarPubMed
Taylor, G. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447461.Google Scholar
Teran, J., Fauci, L. & Shelley, M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104 (3), 038101.CrossRefGoogle ScholarPubMed
Thomases, B. & Guy, R. D. 2014 Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113, 098102.Google Scholar
Vélez-Cordero, J. R. & Lauga, E. 2013 Waving transport and propulsion in a generalized Newtonian fluid. J. Non-Newtonian Fluid Mech. 199, 3750.Google Scholar
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys. Fluids 24, 051902.Google Scholar