Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:29:02.923Z Has data issue: false hasContentIssue false

Turbulent rotating convection at high Rayleigh and Taylor numbers

Published online by Cambridge University Press:  13 April 2010

J. J. NIEMELA*
Affiliation:
International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
S. BABUIN
Affiliation:
International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
K. R. SREENIVASAN
Affiliation:
International Center for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy Department of Physics and Courant Institute of Mathematical Sciences, New York University, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

We report heat transport measurements in a cylindrical convection apparatus rotating about the vertical axis. The aspect ratio was 1/2. The working fluid was cryogenic helium gas and the following parameter ranges applied: the Rayleigh number, Ra, varied in the range 1011 < Ra < 4.3 × 1015, the Taylor number, Ta, varied in the range 1011 < Ta < 3 × 1015, the convective Rossby number, Ro, varied in the range 0.4 < Ro < 1.6 and the Prandtl number, Pr, varied in the range 0.7 < Pr < 5.9. Boussinesq conditions applied quite closely. The heat transport for steady rotation, under all conditions of the present experiments, was smaller than that for the non-rotating case. When the rotation rate varied periodically in time, a sharp transition to a state of significantly enhanced heat transport was observed for modulation Taylor numbers Ta* ≳ 1014, where Ta* is based on the peak value of the modulation angular velocity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. 2001 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.CrossRefGoogle ScholarPubMed
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Hard turbulence in rotating Rayleigh–Bénard convection Phys. Rev. E 53, R5557R5560.CrossRefGoogle ScholarPubMed
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.CrossRefGoogle ScholarPubMed
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008 Breakdown of large-scale circulation in turbulent rotating convection. Europhys. Lett. 84, 24001.CrossRefGoogle Scholar
Liu, Y. & Ecke, R. E. 1997 Heat transport scaling in turbulent Rayleigh–Bénard convection: Effects of rotation and Prandtl number Phys. Rev. Lett. 79, 22572260.CrossRefGoogle Scholar
Niemela, J. J., Smith, M. R. & Donnelly, R. J. 1991 Convective instability with time-varying rotation. Phys. Rev. A 44, 84068409.CrossRefGoogle ScholarPubMed
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J. J. & Sreenivasan, K. R. 2003 a Confined turbulent convection J. Fluid Mech. 481, 355384.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2003 b Rayleigh number evolution of large scale coherent motion in turbulent convection. Europhys. Lett. 62, 829833.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2006 The use of cryogenic helium for classical turbulence: promises and hurdles. J. Low Temp. Phys. 143, 163212.CrossRefGoogle Scholar
Niemela, J. J. & Sreenivasan, K. R. 2008 Formation of the ‘Superconducting’ core in turbulent thermal convection. Phys. Rev. Lett. 100, art. no. 184502.CrossRefGoogle ScholarPubMed
Oresta, P., Stringano, G. & Verzicco, R. 2007 Transitional regimes and rotation effects in Rayleigh–Bénard convection in a slender cylindrical cell. Eur. J. Mech. B/Fluids 26, 114.CrossRefGoogle Scholar
Qiu, X.-L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.CrossRefGoogle ScholarPubMed
Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.CrossRefGoogle Scholar
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.CrossRefGoogle ScholarPubMed
Stevens, R. J. A. M., Zhong, J.-Q., Clercx, H. J. H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.CrossRefGoogle ScholarPubMed
Thompson, K. L., Bajaj, K. M. S. & Ahlers, G. 2002 Traveling concentric-roll patterns in Rayleigh–Benard convection with modulated rotation. Phys. Rev. E 65, 046218.CrossRefGoogle ScholarPubMed
Tritton, D. J. 1988 Physical Fluid Dynamics. Clarendon.Google Scholar
Verzicco, R. 2002 Side wall finite conductivity effects in confined turbulent thermal convection. J. Fluid Mech. 473, 201210.CrossRefGoogle Scholar
Zhong, F., Ecke, R. E., & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.CrossRefGoogle Scholar
Zhong, J.-Q, Stevens, R. J. A. M., Clercx, H. J. H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating convection. Phys. Rev. Lett. 102, 044502.CrossRefGoogle Scholar