Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:23:42.512Z Has data issue: false hasContentIssue false

Turbulent fountains in a confined stratified environment

Published online by Cambridge University Press:  25 June 1999

LYNN J. BLOOMFIELD
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
ROSS C. KERR
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

Abstract

An experimental and theoretical investigation of the flow and density distribution arising from the upward turbulent injection of a dense fluid into a stratified environment of finite extent is presented. Initially, the rising fluid reaches a maximum height before the flow reverses direction and intrudes either along the base of the tank or at an intermediate height in the environment. As more dense fluid is added through either a point or line source, both the fountain and the environment evolve with time. We determine expressions for the motion of the ascending and descending ‘fronts’ that mark the vertical extent of the spreading layer. We also consider the changes to the environmental density profile and determine an expression for the rate at which the top of the fountain rises due to these changes. Finally, we apply our results quantitatively to two physical problems: the replenishment of magma chambers and the heating or cooling of a room.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)