Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T06:19:00.313Z Has data issue: false hasContentIssue false

Turbulent channel flow with large-amplitude velocity oscillations

Published online by Cambridge University Press:  26 April 2006

Sedat F. Tardu
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, Institut de Mécanique de Grenoble, CNRS, UJF, INPG, BP 53-X, 38041, Grenoble, Cédex-France
Gilbert Binder
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, Institut de Mécanique de Grenoble, CNRS, UJF, INPG, BP 53-X, 38041, Grenoble, Cédex-France
Ron F. Blackwelder
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089–1191, USA

Abstract

Measurements in turbulent channel flow with forced oscillations covering a wide range of frequencies (ω+ = 0.03–0.0005) and amplitudes (10–70% of centreline velocity) are presented and discussed. Phase averages of the velocity <u> across the flow, and of the wall shear stress <τ>, as well as the turbulent fluctuations <u′u′> and <tt′> are obtained with LDA and hot-film techniques. The time-mean quantities, except u’2, are only slightly affected by the imposed oscillations whatever their frequency and amplitude. It is shown that the appropriate similarity parameter for the oscillating quantities ũ and ĩ is the non-dimensional Stokes length l+s (or the frequency ω+ = 2/l+2s). In the regime of high-frequency forcing (l+s < 10) the oscillating flow ũ and ĩ are governed by purely viscous shear forces although the time-mean flow is fully turbulent. This behaviour may be explained by the physical significance of l+s. At lower frequency l+s 10, the oscillating flow is influenced by the turbulence, in particular the amplitude of ĩ increases with respect to the Stokes amplitude and becomes proportional to l+s. The relative amplitude of <u′u′> and <tt′> decreases sharply with increasing forcing frequency once l+s < 25. This decay of the turbulence response is faster for the wall shear stress. For forcing frequencies such that l+s > 12, <u′u′> and <tt′> lag behind <u> and <τ> by respectively about 75 and 130 viscous time units. These lags decrease by a factor 2 at higher forcing frequencies. It is shown that in the log layer, the turbulence modulation diffuses away from the wall with a diffusivity equal to that of the time-mean turbulence. The imposed oscillations are felt down to the small scales of the turbulence as may be evidenced from the cyclic modulation of the Taylor microscale, the skewness and the flatness factors of δu′/δt. The modulations of the skewness and the flatness go through a maximum around l+s = 12.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, M. 1975 Measurements and predictions of a fully developed turbulent channel flow with imposed controlled oscillations. PhD Thesis, Stanford University, Dept. Mech. Engineering.
Ackerberg, R. C., Patel, R. D. & Gupta, S. K. 1978 The heat/mass transfer to a finite strip at small Péclet numbers. J. Fluid Mech. 86, 49.Google Scholar
Binder, G. & Kueny, J. L. 1981 Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow. In Unsteady Turbulent Shear Flows (ed. R. Michel, J. Cousteix & R. Houdeville), p. 100. Springer.
Binder, G., Tardu, S., Blackwelder, R. F. & Kueny, J. L. 1985a Etude expérimentale de couches limites turbulentes instationnaires soumises à des gradients de pression moyens nuls ou positifs. Agard Symposium on Unsteady Aerodynamics Fundamentals and Applications to Aircraft Dynamics; Conf. Proc. 386.
Binder, G., Tardu, S., Blackwelder, R. F. & Kueny, J. L. 1985b Large amplitude periodic oscillations in the wall region of a turbulent channel flow. Proc. Fifth Symposium on Turbulent Shear Flows. Cornell University.
Blackwelder, R. F. & Haritonidis, J. H. 1983 Scaling of the bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87.Google Scholar
Bogard, D. G. & Tiederman, W. G. 1986 Burst detection with single point velocity measurements. J. Fluid Mech. 162, 389.Google Scholar
Brereton, G. J. & Reynolds, W. C. 1987 Experimental study of the fluid mechanics of unsteady turbulent boundary layers. Rep. TF-29. Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford.
Brereton, G. J. & Reynolds, W. C. 1991 Dynamic response of boundary-layer turbulence to oscillatory shear. Phys. Fluids 3, 178.Google Scholar
Brereton, G. J. & Reynolds, W. C. & Jarayaman, R. 1990 Response of a turbulent boundary layer to sinusoidal free-stream unsteadiness. J. Fluid Mech. 221, 131.Google Scholar
Carr, W. 1981 A review of unsteady turbulent boundary-layer experiments. NASA Tech. Mem. 81297. Also in Unsteady Turbulent Shear Flows(ed. R. Michel, J. Cousteix & R. Houfeville), p. 3. Springer.
Chambers, F. W., Murphy, H. D. & McEligot, D. M. 1983 Laterally converging flow. Part 2. Temporal wall shear stress. J. Fluid Mech. 127, 403.Google Scholar
Coles, D. 1978 A model for flow in the viscous sublayer. In Coherent Structures of Turbulent Boundary Layers. AFOSR/Lehigh University Workshop (ed. C. R. Smith & D. E. Abbott), pp. 462475. Dept. Mechanical Engineering and Mechanics, Lehigh Un., Bethlehem.
Compte-Bellot, G. 1965 Ecoulement Turbulent entre deux Parois Parallèles. Publications Scientifiques et Techniques de l’Air.
Coughran, M. T. & Bogard, D. G. 1987 An experimental study of the burst structure in a LEBU-modified boundary-layer. 10th Symp. on Turbulence, Rolla, Missouri, September 1987, p. 451.
Cousteix, J. & Houdeville, R. 1985 Turbulence and skin friction evolutions in an oscillating boundary layer. Proc. Fifth Symp. on Turbulent Shear Flows, Cornell University, USA.
Cousteix, J., Houdeville, R. & Javelle, J. 1977 Structure and development of a turbulent boundary layer in an oscillatory external flow. Proc. First Symp. on Turbulent Shear Flows, Pennsylvania State University.
Cousteix, J., Javelle, J. & Houdeville, R. 1981 Influence of Strouhal number on the structure of flat plate turbulent boundary layer. Proc. Third Symp. on Turbulent Shear Flows, University of California, Davis.
Eckelmann, H. 1974 The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 132, 87.Google Scholar
Finnicum, D. S. & Hanratty, T. J. 1988 Effect of imposed sinusoidal oscillations on turbulent flow in a pipe. PhysicoChem. Hydrodyn. 10 (5/6), 585.Google Scholar
Houdeville, R., Jullien, J. E. & Cousteix, J. 1984 Mesure du frottement pariétal par jauges à elements chauds. La Recherche Aérospatiale, 19841.
Jayaraman, R., Parikh, P. & Reynolds, W. C. 1982 An experimental study of the dynamics of an unsteady turbulent boundary layer. Rep. TF-18. Dept. Mech. Engng, Stanford University.
Johansson, A. V. & Alfredsson, P. H. 1982 On the structure of turbulent channel flow. J. Fluid Mech. 122, 295.Google Scholar
Kaiping, P. 1983 Unsteady forced convective heat transfer from a hot film in non-reversing and reversing shear flow. Intl J. Heat Mass Transfer 26, 545.Google Scholar
Karlsson, K. F. 1959 An unsteady turbulent boundary layer. J. Fluid Mech. 5, 622.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kuo, A. Y. S. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution functions in fully turbulent flow. J. Fluid Mech. 50, 285.Google Scholar
Liepmann, H. W. 1949 Die Anwendung eines Satzes über die Nullstellen Stochastishcer Funktionen auf Turbulenzmessungen. Helv. Phys. Acta 22, 119.Google Scholar
Ling, S. C. 1963 Heat transfer from a small isothermal spanwise strip on an insulated boundary. Trans. ASME C: J. Heat Transfer 85, 230.Google Scholar
Louis, B. & Isabey, D. 1990 Impedance of laminar oscillatory flow superimposed on a continuous turbulent flow. In Application to Respiratory Impedance Measurements in Respiratory Biomechanics (ed. M. A. F. Epstein & J. R. Ligas), pp. 57. Springer.
Mao, Z.-X. & Hanratty, T. J. 1986 Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech. 170, 545.Google Scholar
Mao, Z.-X. & Hanratty, T. J. 1991 Measurement of wall shear rate in large amplitude unsteady reversing flows. In Proc. Eight Symp. on Turbulent Shear Flows, Munich, Sept. 9–11, 1991, pp. 11-1-1; 11-1-3.
McLaughlin, D. K. & Tiederman, W. G. 1973 Biasing correcting for individual realization of laser anemometer measurements in turbulent flows. Phys. Fluids 16, 2082.Google Scholar
Menendez, A. N. & Ramaprian, B. R. 1983 Study of unsteady turbulent boundary layers. IIHR Rep. 270. The University of Iowa.
Mizushina, T., Maruyama, T. & Hipsawa, H. 1975 Structure of the turbulence in pulsating pipe flows. J. Chem. Engng Japan 8, 210.Google Scholar
Mizushina, T., Maruyama, T. & Shiozaki, Y. 1973 Pulsating turbulent flow in a tube. J. Chem. Engng Japan 6, 487.Google Scholar
Parikh, P. G., Reynolds, W. C., Jayaraman, R. & Carr, L. W. 1981 Dynamic behaviour of an unsteady turbulent boundary layer. Proc. IUTAM Symp. on Unsteady Turbulent Shear Flows, Toulouse May 5-8, 1981.
Pedley, T. J. 1976 Transfer from a hot film in reversing shear flow. J. Fluid Mech. 78, 513.Google Scholar
Pham, C. T. 1992 Simulation numérique de la réponse du film chaud pariétal. PhD thesis, University of Grenoble.
Ramaprian, B. R. & Tu, S. W. 1983 Fully developed periodic turbulent pipe flow. J. Fluid Mech. 137, 59.Google Scholar
Rodi, W. 1980 Turbulence Models and their Application in Hydraulics — A State of the Art Review. Intl Association of Hydraulic Research Monograph, Delft.
Ronneberger, D. & Ahrens, C. D. 1977 Wall shear stress caused by signal amplitude perturbations of turbulent boundary-layer flow: an experimental investigation. J. Fluid Mech. 83, 433.Google Scholar
Sandborn, V. A. 1979 Evaluation of the time dependent surface shear stress in turbulent flows. Paper 79-WA/FE-17, ASME Winter Annual Meeting, New York.
Shemer, L., Wygnaski, E. K. & Kit, E. 1985 Pulsating flow in a pipe. J. Fluid Mech. 153, 313.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187, 61.Google Scholar
Spence, D. A. & Brown, G. L. 1968 Heat transfer to a quadratic shear profile. J. Fluid Mech. 33, 753.Google Scholar
Sreenivasan, K. R., Prabhu, A. & Narasimha, R. 1983 Zero-crossings in turbulent signals. J. Fluid Mech. 137, 251.Google Scholar
Tardu, S. 1988 Ecoulement turbulent instationnaire près d’une paroi; réponse des structures turbulentes. PhD thesis, University Joseph Fourier, Grenoble I.
Tardu, S. & Binder, G. 1993 Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies. Phys. Fluids A 5, 2028.Google Scholar
Tardu, S., Binder, G. & Blackwelder, R. F. 1985 Wall shear stress measurements in reversing oscillatory turbulent boundary layers. Euromech 202 Conference on Measurement Techniques in Low-Speed Flows; 7–10 October 1985, N.L.R. Netherlands.
Tardu, S., Binder, G. & Blackwelder, R. F. 1986 An experimental investigation of LDA bias using a large amplitude oscillatory channel flow. Third Intl Symp. on Applications of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal.
Tardu, S., Binder, G. & Blackwelder, R. F. 1987 Modulation of bursting by periodic oscillations imposed on channel flow. Proc. Sixth Symp. on Turbulent Shear Flows, Université Paul Sabatier, Toulouse, France, p. 4.5.1.
Tardu, S., Pham, C. T. & Binder, G. 1991 Effects of longitudinal diffusion in the fluid and of heat conduction to the substrate on the response of wall hot-film gauges. In Advances in Turbulence 3 (ed. A. V. Johansson & P. H. Alfredsson), pp. 506513. Springer.
Tu, S. W. & Ramaprian, B. R. 1983 Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions. J. Fluid Mech. 137, 31.Google Scholar
Ueda, H. & Hinze, J. O. 1975 Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech. 67, 125.Google Scholar
Wei, T. & Willmarth, W. W. 1989 Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech. 204, 57.Google Scholar