Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T16:00:18.123Z Has data issue: false hasContentIssue false

Turbulent atomisation of impinging jets under rising backpressure

Published online by Cambridge University Press:  14 January 2025

Erjun Wu
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Bo Wang
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
Wee Kent Chong
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Anlong Yang
Affiliation:
National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, PR China
Feng Zhang
Affiliation:
National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, PR China
Baoe Yang
Affiliation:
National Key Laboratory of Aerospace Liquid Propulsion, Xi'an Aerospace Propulsion Institute, Xi'an 710100, PR China
Yu Su
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Xiaodong Chen*
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
*
Email address for correspondence: [email protected]

Abstract

This study employs direct numerical simulations to examine the effects of varying backpressure conditions on the turbulent atomisation of impinging liquid jets. Using the incompressible Navier–Stokes equations, and a volume-of-fluid approach enhanced by adaptive mesh refinement and an isoface-based interface reconstruction algorithm, we analyse spray characteristics in the environments with ambient gas densities ranging from 1 to 40 times the atmospheric pressure under five different backpressure scenarios. We investigate the behaviour of turbulent jets, incorporate realistic orifice geometries and identify significant variations in the atomisation patterns depending on backpressure. Two distinct atomisation types emerge, namely jet-sheet-ligament-droplet at lower backpressures and jet-sheet-fragment-droplet at higher ones, alongside a transition from dilute to dense spray patterns. This variation affects the droplet size distribution and spray dynamics, with increased backpressure reducing the spray's spreading angle and breakup length, while increasing the droplet size variation. Furthermore, these conditions promote distributions that induce rapid, nonlinear wavy motion in liquid sheets. Topological analysis of the atomisation field using velocity-gradient tensor invariants reveals significant variations in topology volume fractions across different regions. Downstream, the droplet Sauter mean diameter increases and then stabilises, reflecting the continuous breakup and coalescence processes, notably under higher backpressures. This research underscores the substantial impact of backpressure on impinging-jet atomisation and provides essential insights for nozzle design to optimise droplet distributions.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.CrossRefGoogle Scholar
Anderson, W.E., Ryan, H.M., Pal, S. & Santoro, R.J. 1993 Spray formation processes of impinging jet injectors. In NASA Propulsion Engineering Research Center, vol. 2, pp. 69–74. NASA.Google Scholar
Arienti, M., Li, X., Soteriou, M.C., Eckett, C.A., Sussman, M. & Jensen, R.J. 2013 Coupled level-set/volume-of-fluid method for simulation of injector atomisation. J. Propul. Power 29 (1), 147157.CrossRefGoogle Scholar
Ashgriz, N., Li, X. & Sarchami, A. 2011 Instability of Liquid Sheets. Handbook of Atomisation and Sprays: Theory and Applications, pp. 7595. Springer.Google Scholar
Baber, R., Mazzei, L., Thanh, N.T.K. & Gavriilidis, A. 2016 Synthesis of silver nanoparticles using a microfluidic impinging jet reactor. J. Flow Chem. 6, 268278.CrossRefGoogle Scholar
Blackburn, H.M., Mansour, N.N. & Cantwell, B.J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.CrossRefGoogle Scholar
Bremond, N. & Villermaux, E. 2006 Atomisation by jet impact. J. Fluid Mech. 549, 273306.CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.CrossRefGoogle Scholar
Chen, X., Ma, D. & Yang, V. 2012 Mechanism study of impact wave in impinging jets atomisation. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 1089. AIAA.CrossRefGoogle Scholar
Chen, X., Ma, D., Yang, V. & Popinet, S. 2013 High-fidelity simulations of impinging jet atomisation. Atomiz. Sprays 23 (12), 1079–1101.CrossRefGoogle Scholar
Chen, X. & Yang, V. 2019 Recent advances in physical understanding and quantitative prediction of impinging-jet dynamics and atomisation. Chin. J. Aeronaut. 32 (1), 4557.CrossRefGoogle Scholar
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A: Fluid Dyn. 2 (5), 765777.CrossRefGoogle Scholar
Clark, C.J. & Dombrowski, N. 1972 Aerodynamic instability and disintegration of inviscid liquid sheets. Proc. R. Soc. Lond. A 329 (1579), 467478.Google Scholar
Couto, H.S., Bastos-Netto, D. & Migueis, C.E. 1992 Modeling of the initial droplet size distribution function in the spray formed by impinging jets. J. Propul. Power 8 (3), 725728.CrossRefGoogle Scholar
Dodd, M.S & Jofre, L. 2019 Small-scale flow topologies in decaying isotropic turbulence laden with finite-size droplets. Phys. Rev. Fluids 4 (6), 064303.CrossRefGoogle Scholar
Dombrowski, N. & Hooper, P.C.i. 1962 The performance characteristics of an impinging jet atomizer in atmospheres of high ambient density. Fuel 41 (4), 323334.Google Scholar
Dombrowski, N. & Johns, W.R. 1963 The aerodynamic instability and disintegration of viscous liquid sheets. Chem. Engng Sci. 18 (3), 203214.CrossRefGoogle Scholar
Dombrowski, N.D. & Hooper, P.C. 1964 A study of the sprays formed by impinging jets in laminar and turbulent flow. J. Fluid Mech. 18 (3), 392400.CrossRefGoogle Scholar
Elsinga, G.E. & Marusic, I. 2010 Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys. Fluids 22 (1), 015102.CrossRefGoogle Scholar
Erni, P. & Elabbadi, A. 2013 Free impinging jet microreactors: controlling reactive flows via surface tension and fluid viscoelasticity. Langmuir 29 (25), 78127824.CrossRefGoogle ScholarPubMed
Farsoiya, P.K., Mayya, Y.S. & Dasgupta, R. 2017 Axisymmetric viscous interfacial oscillations–theory and simulations. J. Fluid Mech. 826, 797818.CrossRefGoogle Scholar
Hasslberger, J., Cifani, P., Chakraborty, N. & Klein, M. 2020 A direct numerical simulation analysis of coherent structures in bubble-laden channel flows. J. Fluid Mech. 905, A37.CrossRefGoogle Scholar
Hasslberger, J., Ketterl, S., Klein, M. & Chakraborty, N. 2019 Flow topologies in primary atomisation of liquid jets: a direct numerical simulation analysis. J. Fluid Mech. 859, 819838.CrossRefGoogle Scholar
Hasslberger, J., Klein, M. & Chakraborty, N. 2018 Flow topologies in bubble-induced turbulence: a direct numerical simulation analysis. J. Fluid Mech. 857, 270290.CrossRefGoogle Scholar
Heidmann, M.F., Priem, R.J. & Humphrey, J.C. 1957 A study of sprays formed by two impinging jets. Tech. Rep. NACA-TN-3835. NACA.Google Scholar
Heinrich, M. & Schwarze, R. 2020 3d-coupling of volume-of-fluid and Lagrangian particle tracking for spray atomisation simulation in openfoam. SoftwareX 11, 100483.CrossRefGoogle Scholar
Huang, J.C.P. 1970 The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43 (2), 305319.CrossRefGoogle Scholar
Ibrahim, E.A. & Outland, B.E. 2008 A non-linear model for impinging jets atomisation. Proc. Inst. Mech. Engrs 222 (2), 213224.Google Scholar
Inoue, C., Watanabe, T. & Himeno, T. 2008 Study on atomisation process of liquid sheet formed by impinging jets. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 4847. AIAA.CrossRefGoogle Scholar
Jasak, H. 1996 Error analysis and estimation in the finite volume method with applications to fluid flows. PhD thesis, Imperial College, University of London.Google Scholar
Jazayeri, S.A. & Li, X. 2000 Nonlinear instability of plane liquid sheets. J. Fluid Mech. 406, 281308.CrossRefGoogle Scholar
Jung, K., Lim, B., Khil, T. & Yoon, Y. 2004 Breakup characteristics of laminar and turbulent liquid sheets formed by impinging jets in high pressure environments. In 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. 3526. AIAA.CrossRefGoogle Scholar
Kooij, S., Sijs, R., Denn, M.M., Villermaux, E. & Bonn, D. 2018 What determines the drop size in sprays? Phys. Rev. X 8 (3), 031019.Google Scholar
Li, Y., Tang, C. & Zhang, P. 2023 Effect of high-frequency jet velocity perturbations on impinging jets atomisation characteristics. Phys. Fluids 35 (10), 102105.Google Scholar
Lin, S.-P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Ling, Y., Fuster, D., Zaleski, S. & Tryggvason, G. 2017 Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: a numerical closeup. Phys. Rev. Fluids 2 (1), 014005.CrossRefGoogle Scholar
Ma, D.-J., Chen, X.-D., Khare, P. & Yang, V. 2011 Atomisation patterns and breakup characteristics of liquid sheets formed by two impinging jets. In 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 97. AIAA.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.CrossRefGoogle Scholar
Oefelein, J.C. & Yang, V. 1993 Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J. Propul. Power 9 (5), 657677.CrossRefGoogle Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M.S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Roenby, J., Bredmose, H. & Jasak, H. 2016 A computational method for sharp interface advection. R. Soc. Open Sci. 3 (11), 160405.CrossRefGoogle ScholarPubMed
Ruan, C., Xing, F., Huang, Y., Xu, L. & Lu, X. 2017 A parametrical study of the breakup and atomisation process of two impinging liquid jets. Atomiz. Sprays 27 (12), 1025–1040.CrossRefGoogle Scholar
Ryan, H.M., Anderson, W.E., Pal, S. & Santoro, R.J. 1995 Atomisation characteristics of impinging liquid jets. J. Propul. Power 11 (1), 135145.CrossRefGoogle Scholar
Scheufler, H. & Roenby, J. 2019 Accurate and efficient surface reconstruction from volume fraction data on general meshes. J. Comput. Phys. 383, 123.CrossRefGoogle Scholar
Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D. & Corradini, M.L. 1999 Modeling high-speed viscous liquid sheet atomisation. Intl J. Multiphase Flow 25 (6–7), 10731097.CrossRefGoogle Scholar
Sijs, R., Kooij, S. & Bonn, D. 2021 How surfactants influence the drop size in sprays from flat fan and hollow cone nozzles. Phys. Fluids 33 (11), 113608.CrossRefGoogle Scholar
da Silva, C.B & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.CrossRefGoogle Scholar
Soria, J., Sondergaard, R., Cantwell, B.J., Chong, M.S. & Perry, A.E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.CrossRefGoogle Scholar
Squire, H.B. 1953 Investigation of the instability of a moving liquid film. Brit. J. Appl. Phys. 4 (6), 167.CrossRefGoogle Scholar
Tanasawa, Y. 1957 The atomisation of liquids by means of flat impingement. Tech. Rep. Tohoku Univ., vol. 22, pp. 73–95.Google Scholar
Taylor, G. 1960 Formation of thin flat sheets of water. Proc. R. Soc. Lond. A 259 (1296), 117.Google Scholar
Theodorsen, T. 1952 Mechanisms of turbulence. In Proceedings of the 2nd Midwestern Conference on Fluid Mechanics, 1952. Ohio State University.Google Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39 (1), 419446.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Wachtel, H. 2016 Respiratory Drug Delivery. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells, pp. 257274. Springer.Google Scholar
Wang, Y., Huang, W. & Xu, C. 2015 On hairpin vortex generation from near-wall streamwise vortices. Acta Mechanica Sin. 31, 139152.CrossRefGoogle Scholar
Yasuda, N., Yamamura, K. & Mori, Y.H. 2010 Impingement of liquid jets at atmospheric and elevated pressures: an observational study using paired water jets or water and methylcyclohexane jets. Proc. R. Soc. Lond. A 466 (2124), 35013526.Google Scholar
Zhang, C., Zhang, Z., Wu, K., Xia, X. & Fan, X. 2021 Atomisation of misaligned impinging liquid jets. Phys. Fluids 33 (9), 093311.Google Scholar
Zhang, P. & Wang, B. 2017 Effects of elevated ambient pressure on the disintegration of impinged sheets. Phys. Fluids 29 (4), 042102.CrossRefGoogle Scholar