Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T05:03:14.021Z Has data issue: false hasContentIssue false

Triple-deck solutions for supersonic flows past flared cylinders

Published online by Cambridge University Press:  21 April 2006

Ph. Gittler
Affiliation:
Institut für Strömungslehre und Wärmeübertragung, Technische Universität Wien, Wiedner Hauptstraße 7, A-1040 Wien, Austria
A. Kluwick
Affiliation:
Institut für Strömungslehre und Wärmeübertragung, Technische Universität Wien, Wiedner Hauptstraße 7, A-1040 Wien, Austria

Abstract

Using the method of matched asymptotic expansions, the interaction between axisymmetric laminar boundary layers and supersonic external flows is investigated in the limit of large Reynolds numbers. Numerical solutions to the interaction equations are presented for flare angles α that are moderately large. If α > 0 the boundary layer separates upstream of the corner and the formation of a plateau structure similar to the two-dimensional case is observed. In contrast to the case of planar flow, however, separation can occur also if α < 0, owing to the axisymmetric effect of overexpansion and recompression. The separation point then is located downstream of the corner and, most remarkable, a hysteresis phenomenon is observed.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S. N. & Stewartson, K. 1983 On an integral equation of marginal separation. SIAM J. Appl. Maths 43, 11191126.Google Scholar
Brown, S. N. & Williams, P. G. 1975 Self-induced separation. III. J. Inst. Maths Applies 16, 175191.Google Scholar
Burggraf, O. R. 1975 Asymptotic theory of separation and reattachment of a laminar boundary layer on a compression ramp. AGARD paper 168, Göttingen.
Daniels, P. G. 1974 Numerical and asymptotic solutions for the supersonic flow near the trailing edge of a flat plate at incidence. J. Fluid Mech. 63, 641656.Google Scholar
Daniels, P. G. 1979 Laminar boundary-layer reattachment in supersonic flow. J. Fluid Mech. 90, 289303.Google Scholar
Daniels, P. G. 1980 Laminar boundary-layer reattachment in supersonic flow. Part 2. Numerical solution. J. Fluid Mech. 97, 129144.Google Scholar
Duck, P. 1984 The effect of a surface discontinuity on an axisymmetric boundary layer. Q. J. Mech. Appl. Maths 37, 5774.Google Scholar
Duck, P. W. & Burggraf, O. R. 1986 Spectral solutions for three-dimensional triple-deck flow over surface topography. J. Fluid Mech. 162, 122.Google Scholar
Ermak, Yu. N. 1969 Flow of a viscous incompressible fluid past the rounded leading edge of a slender airfoil. Tr. TsAGI, No. 1141.
Gittler, Ph. 1984 Laminare Wechselwirkungsvorgänge am schiebenden Flügel bei Überschallströmung. Z. angew. Math. Mech. 64, T198200.Google Scholar
Gittler, Ph. 1985 Dreidimensionale Wechselwirkungsvorgänge bei laminaren Grenzschichten. Dissertation, Technische Universität Wien.
Horton, H. P. 1971 Adiabatic laminar boundary-layer/shock-wave interactions on flared axisymmetric bodies. AIAA J. 9, 21412148.Google Scholar
Kluwick, A. 1987 Interacting boundary layers. Z. angew. Math. Mech. 67, T313.Google Scholar
Kluwick, A., Gittler, Ph. & Bodonyi, R. J. 1984 Viscous-inviscid interactions on axisymmetric bodies of revolution in supersonic flow. J. Fluid Mech. 140, 281301.Google Scholar
Kluwick, A., Gittler, Ph. & Bodonyi, R. J. 1985 Freely interacting axisymmetric boundary layers on bodies of revolution. Q. J. Mech. Appl. Maths 38, 575588.Google Scholar
Leblanc, R. & Ginoux, J. 1970 Influence of cross flow on two dimensional separation. Von Karman Institute for Fluid Dynamics, TN62.
Lighthill, M. J. 1945 Supersonic flow past bodies of revolution. Aero. Res. Counc. R & M 2003.
Matveeva, N. S. & Neiland, V. I. 1967 Laminar boundary layer near a corner point of a body. Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, 4, 6470.Google Scholar
Messiter, A. F., Hough, G. R. & Fro, A. 1973 Base pressure in laminar supersonic flow. J. Fluid Mech. 60, 605624.Google Scholar
Oswatitsch, K. 1958 Die Ablösebedingungen von Grenzschichten. In Grenzschichtforschung (ed. H. Görtler), IUTAM Symposium, Freiburg 1957, 1958, pp. 357367. Springer.
Reyhner, T. A. & Flügge-lotz, I. 1968 The interaction of a shock wave with a laminar boundary layer. Intl J. Nonlinear Mech. 3, 173.Google Scholar
Rizzetta, D., Burggraf, O. & Jenson, R. 1978 Triple-deck solutions for viscous supersonic and hypersonic flow past corners. J. Fluid Mech. 89, 535552.Google Scholar
Rosenhead, L. 1963 Laminar Boundary Layers. Oxford University Press.
Ruban, A. I. 1978 Izv. Akad. Nauk SSSR, J. Num. Math. & Math. Phys. 18, 12531265.
Ruban, A. I. 1981a Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza 1, 4251.Google Scholar
Ruban, A. I. 1981b Singular solutions of the boundary layer equations which can be extended continuously through the point of zero surface friction. Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza 6, 4252.Google Scholar
Smith, F. T. 1977 The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. A 356, 443463.Google Scholar
Smith, F. T. & Merkin, J. H. 1982 Triple-deck solutions for subsonic flow past humps, steps, concave or convex corners, and wedged trailing edges. Comput. Fluids 10, 725.Google Scholar
Smith, F. T., Sykes, R. I. & Brighton, P. W. M. 1977 A two-dimensional boundary layer encountering a three-dimensional hump. J. Fluid Mech. 83, 163176.Google Scholar
Stewartson, K. 1970a Is the singularity at separation removable?. J. Fluid Mech. 44, 347364.Google Scholar
Stewartson, K. 1970b On laminar boundary layers near corners. Q. J. Mech. Appl. Maths 23, 137152 and corrections and addition 24 (1971), 387–389.Google Scholar
Stewartson, K., Smith, F. T. & Kaups, K. 1982 Marginal separation. Stud. Appl. Math. 67, 4561.Google Scholar
Stewartson, K. & Williams, P. G. 1973 Self induced separation. II. Mathematika 20, 98108.Google Scholar
Sykes, R. I. 1978 Stratification effects in boundary layer flow over hills. Proc. R. Soc. Lond. A 361, 225243.Google Scholar
Sykes, R. I. 1980 On three-dimensional boundary layer flow over surface irregularities. Proc. R. Soc. Land. A 373, 311329.Google Scholar
Vatsa, V. N. & Werle, M. J. 1977 Quasi-three-dimensional laminar boundary-layer separations in supersonic flow. Trans. ASME I: J. Fluids Engng 99, 634639Google Scholar
Ward, G. N. 1948 The approximate external and internal flow past a quasi-cylindrical tube moving at supersonic speeds. Q. J. Mech. Appl. Maths 1, 225.Google Scholar
Werle, M. J. & Davis, R. T. 1972 Incompressible laminar boundary layers on a parabola at angle of attack: a study of the separation point. Trans. ASME E: J. Appl. Mech. 20, 712Google Scholar
Werle, M. J., Vatsa, V. N. & Bertke, S. D. 1973 Sweep effects on supersonic separated flows - a numerical study. AIAA J. 11, 17631765.Google Scholar