Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T09:45:21.576Z Has data issue: false hasContentIssue false

Trapped edge waves in stratified rotating fluids: numerical and asymptotic results

Published online by Cambridge University Press:  14 November 2007

ALEXANDER T. I. ADAMOU
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
R. V. CRASTER
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
STEFAN G. LLEWELLYN SMITH
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, UCSD, La Jolla CA 92093-0411, USA

Abstract

The existence of trapped edge waves in a rotating stratified fluid with non-constant topography is studied using asymptotic and numerical techniques. A refinement of the classical WKBJ method is employed that is uniform at both the shoreline and caustic, where the classical approximation is singular, and is also uniform over long distances from the shore. This approach requires the use of comparison equations and it is shown that the two used previously in the literature are asymptotically equivalent in terms of the wave amplitude, but have small differences in the predicted wave frequencies. These asymptotic results, and results using shallow-water theory, are then compared to results from a careful numerical study of the nonlinear differential eigenvalue problem, allowing their range of practical applicability to be assessed. This numerical approach is also used to investigate whether trapping occurs in non-trivial and realistic geometries in the internal gravity wave band, which has been an open question for some time.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. (Ed.) 1974 Handbook of Mathematical Functions. Dover.Google Scholar
Adamou, A. T. I., Gridin, D. & Craster, R. V. 2005 Acoustic quasi-modes in slowly-varying cylindrical tubes. Q. J. Mech. Appl. Maths 58, 419438.CrossRefGoogle Scholar
Ball, F. K. 1967 Edge waves in an ocean of finite depth. Deep-Sea Res. 14, 7988.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods, 2nd edn. Dover.Google Scholar
Dale, A. C. & Sherwin, T. J. 1996 The extension of baroclinic coastal-trapped wave theory to superinertial frequencies. J. Phys. Oceanogr. 26, 23052315.2.0.CO;2>CrossRefGoogle Scholar
Davies, E. B. & Parnovski, L. 1998 Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Maths 51, 477492.CrossRefGoogle Scholar
Duclos, P. & Exner, P. 1995 Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Maths Phys. 7, 73102.CrossRefGoogle Scholar
Evans, D. V. 1988 Mechanisms for the generation of edge waves over a sloping beach. J. Fluid Mech. 186, 379391.CrossRefGoogle Scholar
Evans, D. V. 1989 Edge waves over a sloping beach. Q. J. Mech. Appl. Maths 42, 131142.CrossRefGoogle Scholar
Evans, D. V., Levitin, M. & Vassiliev, D. 1994 Existence theorems for trapped modes. J. Fluid Mech. 261, 2131.CrossRefGoogle Scholar
Greenspan, H. P. 1970 A note on edge waves in a stratified fluid. Stud. Appl. Maths 49, 381388.CrossRefGoogle Scholar
Gridin, D., Adamou, A. T. I. & Craster, R. V. 2004 Electronic eigenstates in quantum rings: Asymptotics and numerics. Phys. Rev. B 69, 155317.CrossRefGoogle Scholar
Gridin, D., Adamou, A. T. I. & Craster, R. V. 2005 a Trapped modes in curved elastic plates. Proc. R. Soc. Lond. A 461, 11811197.Google Scholar
Gridin, D., Craster, R. V. & Adamou, A. T. I. 2005 b Trapped modes in bent elastic rods. Wave Motion 42, 352366.CrossRefGoogle Scholar
Kaplunov, J. D., Rogerson, G. A. & Tovstik, P. E. 2005 Localized vibration in elastic structures with slowly varying thickness. Q. J. Mech. Appl. Maths 58, 645664.CrossRefGoogle Scholar
Kravtsov, Y. A. 1964 A modification of the geometrical optics method. Radiofizika 7, 664673, in Russian.Google Scholar
Langer, R. E. 1931 On the asymptotic solutions of ordinary differential equations with an application to the Bessel functions of large order. Trans. Am. Maths Soc. 33, 2364.CrossRefGoogle Scholar
Linton, C. & Ratcliffe, K. 2004 Bound states in coupled guides. I. Two dimensions. J. Maths Phys. 45, 13591379.CrossRefGoogle Scholar
Llewellyn Smith, S. G. 2004 Stratified rotating edge waves. J. Fluid Mech. 498, 161170.CrossRefGoogle Scholar
Ludwig, D. 1966 Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Maths 19, 215250.CrossRefGoogle Scholar
McIver, M. 1999 Uniqueness below a cut-off frequency for the two-dimensional linear water-wave problem. Proc. R. Soc. Lond. A 455, 14351441.CrossRefGoogle Scholar
McKee, W. D. 1973 Internal-inertia waves in a fluid of variable depth. Proc. Camb. Phil. Soc. 73, 205213.CrossRefGoogle Scholar
Miles, J. 1989 Edge waves on a gently sloping beach. J. Fluid Mech. 199, 125131.CrossRefGoogle Scholar
Munk, W. H., Snodgrass, F. & Wimbush, M. 1970 Tides off shore: Transition from California coastal to deep-sea waters. Geophys. Fluid Dyn. 1, 161235.CrossRefGoogle Scholar
Muzylev, S. V., Bulgakov, S. N. & Duran-Matute, M. 2005 Edge capillary-gravity waves on a sloping beach. Phys. Fluids 17, 048103.CrossRefGoogle Scholar
Muzylev, S. V. & Odulo, A. B. 1980 Waves in a rotating stratified fluid on a sloping beach. Dokl. Akad. Nauk. SSSR 250, 331335.Google Scholar
Ou, H. W. 1980 On the propagation of free topographic Rossby waves near continental margins. I. Analytic model for a wedge. J. Phys. Oceanogr. 10, 10511060.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Pringle, J. M. & Brink, K. H. 1999 High-frequency internal waves on a sloping shelf. J. Geophys. Res. 104, 52835299.CrossRefGoogle Scholar
Saint-Guily, B. 1968 Ondes de frontière dans un bassin tournant dont le fond est incliné. C. R. Acad. Sci. Paris 266, 12911293.Google Scholar
Shen, M. C. & Keller, J. B. 1975 Uniform ray theory of surface, internal and acoustic wave propagation in a rotating ocean or atmosphere. SIAM J. Appl. Maths 28, 857875.CrossRefGoogle Scholar
Shen, M. C., Meyer, R. E. & Keller, J. B. 1968 Spectra of water waves in channels and around islands. Phys. Fluids 11, 22892304.CrossRefGoogle Scholar
Smith, R. 1977 Propagation in slowly-varying wave-guides. SIAM J. Appl. Maths 33, 3950.CrossRefGoogle Scholar
Stokes, G. G. 1846 Report on recent researches in hydrodynamics. Brit. Ass. Rep. 1, 120.Google Scholar
Sun, S. M. & Shen, M. C. 1994 Linear water waves over a gently sloping beach. Q. J. Appl. Maths 52, 243259.CrossRefGoogle Scholar
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar
Whitham, G. B. 1979 Lectures on Wave Propagation, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 61. New Delhi: Narosa.Google Scholar
Zhevandrov, P. 1991 Edge waves on a gently sloping beach: uniform asymptotics. J. Fluid Mech. 233, 483493.CrossRefGoogle Scholar