Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T18:55:02.708Z Has data issue: false hasContentIssue false

Transmission of acoustic-gravity waves through gas–liquid interfaces

Published online by Cambridge University Press:  10 August 2012

Oleg A. Godin*
Affiliation:
Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309-0216, USA NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, CO 80305-3328, USA
Iosif M. Fuks
Affiliation:
NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, CO 80305-3328, USA Zel Technologies LLC, Boulder, CO 80305-3328, USA
*
Email address for correspondence: [email protected]

Abstract

It was demonstrated recently that gas–liquid interfaces, which are usually almost perfect reflectors of acoustic waves, become anomalously transparent, and the power flux in the wave transmitted into the gas increases dramatically, when a compact sound source in the liquid approaches the interface within a fraction of the wavelength (Godin, Phys. Rev. Lett., vol. 97, 2006b, 164301). Powerful underwater explosions and certain natural sources, such as underwater landslides, generate very low-frequency waves in water and air, for which fluid buoyancy and compressibility simultaneously serve as restoring forces. In this paper, analysis of sound transmission through gas–liquid interfaces is extended to acoustic-gravity waves (AGWs) and applied to the air–water interface. It is found that, as for sound, the interface becomes anomalously transparent for sufficiently shallow compact sources of AGWs. Depending on the source type, the increase of a wave power flux into gas due to diffraction effects can reach several orders of magnitude. The physical mechanisms responsible for the anomalous transparency are discussed. Excitation of an interface wave by a point source in the liquid is shown to be an important channel of AGW transmission into the gas, which has no counterpart in the case of sound.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abramowitz, M. & Stegun, I. A.  (Eds) 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
2. Adam, J. A. 1977 Solutions of the inhomogeneous acoustic-gravity wave equation. J. Phys. A: Math. Gen. 10, L169L173.CrossRefGoogle Scholar
3. Artru, J., Ducic, V., Kanamori, H., Lognonné, P. & Murakami, M. 2005 Ionospheric detection of gravity waves induced by tsunamis. Geophys. J. Intl 160, 840848.CrossRefGoogle Scholar
4. Brekhovskikh, L. M. & Godin, O. A. 1998 Acoustics of Layered Media 1: Plane and Quasi-Plane Waves, 2nd edn. Springer.Google Scholar
5. Brekhovskikh, L. M. & Godin, O. A. 1999 Acoustics of Layered Media 2: Point Sources and Bounded Beams, 2nd edn. Springer.CrossRefGoogle Scholar
6. Brekhovskikh, L. M. & Goncharov, V. 1994 Mechanics of Continua and Wave Dynamics, 2nd edn., chap. 10. Springer.CrossRefGoogle Scholar
7. Drob, D. P., Garcés, M., Hedlin, M. & Brachet, N. 2010 The temporal morphology of infrasound propagation. Pure Appl. Geophys. 167, 437453.CrossRefGoogle Scholar
8. Eckart, C. 1960 Hydrodynamics of Oceans and Atmospheres. Pergamon.Google Scholar
9. Evers, L. G. & Haak, H. W. 2001 Listening to sounds from an exploding meteor and oceanic waves. Geophys. Res. Lett. 28, 4144.CrossRefGoogle Scholar
10. Fuks, I. & Godin, O. A. 2011 Generation of acoustic-gravity waves by a submerged monopole source located near the water–air interface. In OCEANS’11, MTS/IEEE Conference Proceedings, IEEE, Kona, Hawaii, 19–22 September, pp. 110. Marine Technology Society.Google Scholar
11. Gasilova, L. A, Gordeeva, I. Yu. & Petukhov, Yu. V. 1992 Generation of a modified Lamb surface wave in the atmosphere by an underwater source. Sov. Phys. Acoust. 38, 567570.Google Scholar
12. Gasilova, L. A., Gordeeva, I. Yu. & Petukhov, Yu. V. 1993 Generation of a Stoneley–Scholte–Lamb atmospheric surface-wave by an acoustic source located in an ocean wave-guide. Acoust. Phys. 39, 1923.Google Scholar
13. Gasilova, L. A. & Petukhov, Yu. V. 1993 Influence of gravity-waves in the ocean on atmospheric surface-wave excitation by an underwater source. Acoust. Phys. 39, 428434.Google Scholar
14. Gasilova, L. A. & Petukhov, Yu. V. 1999 Theory of surface waves propagating along sharp boundaries in the atmosphere. Izv. Akad. Nauk. Fiz. Atm. Okeana 35, 1423.Google Scholar
15. Godin, O. A. 1997 Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion 25, 143167.CrossRefGoogle Scholar
16. Godin, O. A. 2004 Air–sea interaction and feasibility of tsunami detection in the open ocean. J. Geophys. Res. 109, C05002.CrossRefGoogle Scholar
17. Godin, O. A. 2006a Calculation of amplitudes of acoustic normal modes from the reciprocity principle. J. Acoust. Soc. Am. 119, 20962100.CrossRefGoogle ScholarPubMed
18. Godin, O. A. 2006b Anomalous transparency of water–air interface for low-frequency sound. Phys. Rev. Lett. 97, 164301.CrossRefGoogle ScholarPubMed
19. Godin, O. A. 2007 Transmission of low-frequency sound through the water-to-air interface. Acoust. Phys. 53, 305312.CrossRefGoogle Scholar
20. Godin, O. A. 2008a Low-frequency sound transmission through a gas–liquid interface. J. Acoust. Soc. Am. 123, 18621879.CrossRefGoogle ScholarPubMed
21. Godin, O. A. 2008b Sound transmission through water–air interfaces: new insights into an old problem. Contemp. Phys. 49, 105123.CrossRefGoogle Scholar
22. Godin, O. A., Irisov, V. G., Leben, R. R., Hamlington, B. D. & Wick, G. A. 2009 Variations in sea surface roughness induced by the 2004 Sumatra–Andaman tsunami. Nat. Hazards Earth Syst. Sci. 9, 11351147.CrossRefGoogle Scholar
23. Godin, O. A. 2011 Low-frequency sound transmission through a gas–solid interface. J. Acoust. Soc. Am. 129, EL45EL51.CrossRefGoogle ScholarPubMed
24. Godin, O. A. 2012a Incompressible wave motion of compressible fluids. Phys. Rev. Lett. 108, 194501.CrossRefGoogle ScholarPubMed
25. Godin, O. A. 2012b Acoustic-gravity waves in atmospheric and oceanic waveguides. J. Acoust. Soc. Am. 132, 657669.CrossRefGoogle ScholarPubMed
26. Gossard, E. & Hooke, W. 1975 Waves in the Atmosphere. Elsevier.Google Scholar
27. Hristov, T. S., Miller, S. D. & Friehe, C. A. 2003 Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422, 5558.CrossRefGoogle ScholarPubMed
28. Lamb, H. 1911 On atmospheric oscillations. Proc. R. Soc. Lond. A 84, 551572.Google Scholar
29. Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
30. Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
31. McDonald, B. E. & Calvo, D. C. 2007 Enhanced sound transmission from water to air at low frequencies. J. Acoust. Soc. Am. 122, 31593161.CrossRefGoogle ScholarPubMed
32. Kemball-Cook, S. & Wang, B. 2001 Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Clim. 14, 29232942.2.0.CO;2>CrossRefGoogle Scholar
33. Petukhov, Yu. V. 1992 Generation of a modified Lamb surface wave in the atmosphere by an underwater source. Sov. Phys. Acoust. 38, 407410.Google Scholar
34. Pierce, A. D. 1963 Propagation of acoustic-gravity waves from a small source above the ground in an isothermal atmosphere. J. Acoust. Soc. Am. 35, 17981807.CrossRefGoogle Scholar
35. Pierce, A. D. 1965 Propagation of acoustic-gravity waves in a temperature- and wind-stratified atmosphere. J. Acoust. Soc. Am. 37, 218227.CrossRefGoogle Scholar
36. Press, F. & Harkrider, D. G. 1962 Propagation of acoustic-gravity waves in the atmosphere. J. Geophys. Res. 67, 38893908.CrossRefGoogle Scholar
37. Rolland, L. M., Occhipinti, G., Lognonné, P. & Loevenbruck, A. 2010 Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophys. Res. Lett. 37, L17101.CrossRefGoogle Scholar
38. Savina, O. N. 1997 Surface waves at a temperature drop in atmosphere. Izv. Akad. Nauk. Fiz. Atm. Okeana 33, 4852.Google Scholar
39. Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.CrossRefGoogle Scholar
40. Tolstoy, I. 1963 The theory of waves in stratified fluids including the effects of gravity and rotation. Rev. Mod. Phys. 35, 207230.CrossRefGoogle Scholar
41. Tolstoy, I. 1973 Wave Propagation. McGraw-Hill.Google Scholar
42. Thome, G. 1968 Long-period waves generated in the polar ionosphere during the onset of magnetic storms. J. Geophys. Res. 73, 63196336.CrossRefGoogle Scholar
43. Watada, S. 2009 Radiation of acoustic and gravity waves and propagation of boundary waves in the stratified fluid from a time-varying bottom boundary. J. Fluid Mech. 627, 361377.CrossRefGoogle Scholar