Article contents
Transition processes in shock wave interactions
Published online by Cambridge University Press: 28 March 2006
Abstract
This paper is a discussion of recent experiments in shock-wave refraction which have clarified a special type of shock outflow process appearing to have relevance to other shock interactions, and notably to shock reflection from an oblique wall. For certain incident shock strengths and angles of incidence α, the air/methane refraction problem simulates closely the situation in the trouble-some range of the reflection problem, in which α lies between the value αe at which the theoretical solutions terminate and the value α0 that marks the onset of Mach reflection, and in which the flow deflections cannot be reconciled with theoretically permissible reflected shock strengths. In the analogous refraction cases, the reflected shock is observed to increase in strength along its length to a maximum value at the intersection point, and to be followed by a subsonic rarefaction zone which also increases in severity near the intersection. In fact, this zone appers to coalesce into a subsonic discontinuity, just at the intersection point—a feature which would contradict one of the basic assumptions of the regular reflection and refraction theories. Other refraction experiments suggest that a similar process is relevant to the Mach reflection configuration, and may account for the discrepancies in the three-shock theory for weak incident shocks.
- Type
- Research Article
- Information
- Copyright
- © 1957 Cambridge University Press
References
- 7
- Cited by