Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T01:12:08.919Z Has data issue: false hasContentIssue false

Time-dependent plumes and jets with decreasing source strengths

Published online by Cambridge University Press:  01 September 2006

M. M. SCASE
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
C. P. CAULFIELD
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK BP Institute, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK
S. B. DALZIEL
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
J. C. R. HUNT
Affiliation:
Centre for Polar Observation and Modelling, Department of Space and Climate Physics, Pearson Building, University College London, Gower Street, London WC1E 6BT, UK

Abstract

The classical bulk model for isolated jets and plumes due to Morton, Taylor & Turner (Proc. R. Soc. Lond. A, vol. 234, 1956, p. 1) is generalized to allow for time-dependence in the various fluxes driving the flow. This new system models the spatio-temporal evolution of jets in a homogeneous ambient fluid and Boussinesq and non-Boussinesq plumes in stratified and unstratified ambient fluids.

Separable time-dependent similarity solutions for plumes and jets are found in an unstratified ambient fluid, and proved to be linearly stable to perturbations propagating at the velocity of the ascending plume fluid. These similarity solutions are characterized by having time-independent plume or jet radii, with appreciably smaller spreading angles ($\tan^{-1}(2\alpha/3)$) than either constant-source-buoyancy-flux pure plumes (with spreading angle $\tan^{-1}(6\alpha/5)$) or constant-source-momentum-flux pure jets (with spreading angle $\tan^{-1}(2\alpha)$), where $\alpha$ is the conventional entrainment coefficient. These new similarity solutions are closely related to the similarity solutions identified by Batchelor (Q. J. R. Met. Soc., vol. 80, 1954, p. 339) in a statically unstable ambient, in particular those associated with a linear increase in ambient density with height.

If the source buoyancy flux (for a rising plume) or source momentum flux (for a rising jet) is decreased generically from an initial to a final value, numerical solutions of the governing equations exhibit three qualitatively different regions of behaviour. The upper region, furthest from the source, remains largely unaffected by the change in buoyancy flux or momentum flux at the source. The lower region, closest to the source, is an effectively steady plume or jet based on the final (lower) buoyancy flux or momentum flux. The transitional region, in which the plume or jet adjusts between the states in the lower and upper regions, appears to converge very closely to the newly identified stable similarity solutions. Significantly, the predicted narrowing of the plume or jet is observed. The size of the narrowing region can be determined from the source conditions of the plume or jet. Minimum narrowing widths are considered with a view to predicting pinch-off into rising thermals or puffs.

Type
Papers
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)