Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:44:13.389Z Has data issue: false hasContentIssue false

Time-analyticity of Lagrangian particle trajectories in ideal fluid flow

Published online by Cambridge University Press:  16 May 2014

Vladislav Zheligovsky
Affiliation:
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences, 84/32 Profsoyuznaya Street, 117997 Moscow, Russian Federation UNS, CNRS, Lab. Lagrange, OCA, CS 34229, 06304 Nice CEDEX 4, France
Uriel Frisch*
Affiliation:
UNS, CNRS, Lab. Lagrange, OCA, CS 34229, 06304 Nice CEDEX 4, France
*
Email address for correspondence: [email protected]

Abstract

It is known that the Eulerian and Lagrangian structures of fluid flow can be drastically different; for example, ideal fluid flow can have a trivial (static) Eulerian structure, while displaying chaotic streamlines. Here, we show that ideal flow with limited spatial smoothness (an initial vorticity that is just a little better than continuous) nevertheless has time-analytic Lagrangian trajectories before the initial limited smoothness is lost. To prove these results we use a little-known Lagrangian formulation of ideal fluid flow derived by Cauchy in 1815 in a manuscript submitted for a prize of the French Academy. This formulation leads to simple recurrence relations among the time-Taylor coefficients of the Lagrangian map from initial to current fluid particle positions; the coefficients can then be bounded using elementary methods. We first consider various classes of incompressible fluid flow, governed by the Euler equations, and then turn to highly compressible flow, governed by the Euler–Poisson equations, a case of cosmological relevance. The recurrence relations associated with the Lagrangian formulation of these incompressible and compressible problems are so closely related that the proofs of time-analyticity are basically identical.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhiezer, N. I. 1990 Elements of the Theory of Elliptic Functions, AMS Translations of Mathematical Monographs, vol. 79. AMS.CrossRefGoogle Scholar
Arfken, G. B. & Weber, H. J. 2005 Mathematical Method for Physicists. Elsevier.Google Scholar
Benachour, S. 1976 Analyticité des solutions périodiques de l’équation d’Euler en trois dimensions. C. R. Acad. Sci. Paris A 283, 107110.Google Scholar
Bernardeau, F.2013 The evolution of the large-scale structure of the universe: beyond the linear regime. Lectures given to the Les Houches Summer School Post-Planck Cosmology, 8 July–2 August 2013. http://arxiv.org/abs/1311.2724.Google Scholar
Bouchet, F. R., Colombi, S., Hivon, E. & Juszkiewicz, R. 1995 Perturbative Lagrangian approach to gravitational instability. Astron. Astrophys. 296, 575608; http://adsabs.harvard.edu/abs/1995A%26A...296..575B.Google Scholar
Bouchet, F. R., Juszkiewicz, R., Colombi, S. & Pellat, R. 1992 Weakly nonlinear gravitational instability for arbitrary $\varOmega $ . Astrophys. J. 394, L5L8; http://adsabs.harvard.edu/abs/1992ApJ...394L...5B.CrossRefGoogle Scholar
Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411452.Google Scholar
Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R. & Sobolevskii, A. 2003 Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346, 501524; arXiv:astro-ph/0304214.CrossRefGoogle Scholar
Buchert, T. 1989 A class of solutions in Newtonian cosmology and the pancake theory. Astron. Astrophys. 22, 924.Google Scholar
Buchert, T. 1992 Lagrangian theory of gravitational instability of Friedman–Lemaitre cosmologies and the ‘Zel’dovich approximation’. Mon. Not. R. Astron. Soc. 254, 729737; http://adsabs.harvard.edu/abs/1992MNRAS.254..729B.Google Scholar
Buckmaster, T., De Lellis, C. & Székelyhidi, L. Jr 2013 Transporting microstructure and dissipative Euler flows. arXiv:1302.2815 [math.AP].Google Scholar
Cauchy, A. L. 1815 Sur l’état du fluide à une époque quelconque du mouvement. Mémoires extraits des recueils de l’Académie des Sciences de l’Institut de France. Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie. Extraits des Mémoires présentés par divers savants à l’Académie royale des Sciences de l’Institut de France et imprimés par son ordre. Sci. Math. Physique. 1827 Tome I, Seconde Partie, 33–73; http://gallica.bnf.fr/ark:/12148/bpt6k90181x.r=Oeuvres+completes+d%27Augustin+Cauchy.langFR.Google Scholar
Chemin, J.-Y. 1992 Régularité des trajectoires des particules d’un fluide incompressible remplissant l’espace. J. Math. Pures Appl. 71, 407417.Google Scholar
Constantin, P., Vicol, V. & Wu, J.2014 Analyticity of Lagrangian trajectories for well-posed inviscid incompressible fluid models. arXiv:1403.5749 [math.AP] (submitted).Google Scholar
Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines and Lagrangian turbulence: the ABC-flows. J. Fluid Mech. 167, 353391.Google Scholar
Ehlers, J. & Buchert, T. 1997 Newtonian cosmology in Lagrangian formulation: foundations and perturbation theory. Gen. Relativity Gravitation 29, 733764.Google Scholar
Frisch, U. & Villone, B. 2014 Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H; http://arxiv.org/abs/1402.4957 [math.HO] (submitted).Google Scholar
Frisch, U. & Zheligovsky, V. 2014 A very smooth ride in a rough sea. Commun. Math. Phys. 326, 499505; http://arxiv.org/abs/1212.4333 [math.AP].Google Scholar
Gilbarg, D. & Trudinger, N. S. 1998 Elliptic Partial Differential Equations of Second Order. Springer.Google Scholar
Hankel, H. 1861 Zur Allgemeinen Theorie der Bewegung der Flüssigkeiten. Preisschrift der philosophischen Facultät der Georgia Augusta. Printed by Dieterichschen Univ. Buchdruckerei (W. Fr. Kaestner); http://babel.hathitrust.org/cgi/pt?id=mdp.39015035826760;view=1up;seq=5.Google Scholar
Hölder, E. 1933 Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit. Math. Z. 37, 727738.Google Scholar
Isett, Ph.2014 Regularity in time along the coarse scale flow for the incompressible Euler equations. arXiv:1307.0565 [math.AP].Google Scholar
Katznelson, Y. 2004 An Introduction to Harmonic Analysis. 3rd edn Cambridge University Press.Google Scholar
Korn, A. 1907 Sur les équations de l’élasticité. Ann. Sci. École Norm. Sup. (3) 24, 975.Google Scholar
Kukavica, I. & Vicol, V. 2009 On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137, 669677.Google Scholar
Kukavica, I. & Vicol, V. 2011 On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Nonlinearity 24, 765796.Google Scholar
Levermore, C. D. & Oliver, M. 1997 Analyticity of solutions for a generalized Euler equation. J. Diff. Equ. 133, 321339.Google Scholar
Lichtenstein, L. 1925 Über einige Hilfssätze der Potentialtheorie. I. Math. Z. 23, 7288.CrossRefGoogle Scholar
Lichtenstein, L. 1927 Über einige Existenzprobleme der Hydrodynamik. Math. Z. 26, 196323.Google Scholar
Majda, A. J. & Bertozzi, A. L. 2002 Vorticity and Incompressible Flow. Cambridge University Press.Google Scholar
Matsubara, T. 2008 Resumming cosmological perturbations via the Lagrangian picture: one-loop results in real space and in redshift space. Phys. Rev. D 77, 063530.Google Scholar
Moutarde, F., Alimi, J. M., Bouchet, F. R., Pellat, R. & Raman, A. 1991 Precollapse scale invariance in gravitational instability. Astrophys. J. 382, 377381.Google Scholar
Pauls, W. & Matsumoto, T. 2005 Lagrangian singularities of steady two-dimensional flow. Geophys. Astrophys. Fluid Dyn. 99, 6175.Google Scholar
Pohle, F. V.1951 The Lagrangian equations of hydrodynamics: solutions which are analytic functions of the time. Thesis, New York University.Google Scholar
Rampf, C. & Buchert, T. 2012 Lagrangian perturbations and the matter bispectrum I: fourth-order model for non-linear clustering. J. Cosmol. Astropart. Phys. JCAP06(2012)021.Google Scholar
Sahni, V. & Shandarin, S. 1996 Accuracy of Lagrangian approximations in voids. Mon. Not. R. Astron. Soc. 282, 641645.CrossRefGoogle Scholar
Serfati, Ph.1992 Étude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l’équation d’Euler incompressible. Thèse de Doctorat de l’Université Paris 6.Google Scholar
Serfati, Ph. 1995a Équation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Paris I 320, 175180.Google Scholar
Serfati, Ph. 1995b Structures holomorphes à faible régularité spatiale en mécanique des fluides. J. Math. Pures Appl. 74, 95104.Google Scholar
Shnirelman, A.2012 On the analyticity of particle trajectories in the ideal incompressible fluid. arXiv:1205.5837 [math.AP].Google Scholar
Stein, E. M. 1970 Singular Integrals and Differentiability Properties of Functions. Princeton University Press.Google Scholar
Stoker, J. J. 1957 Water Waves: The Mathematical Theory with Applications. Wiley-Interscience.Google Scholar
Stokes, G. G. 1848 Notes on Hydrodynamics. IV. Demonstration of a fundamental theorem. Cambridge Dublin Math. J. 3, 209219; Available at the Goettingen Archive.Google Scholar
Stokes, G. G. 1883 Notes on Hydrodynamics. IV. Demonstration of a fundamental theorem. In Mathematical and Physical Papers, vol. II, pp. 3650. Cambridge University Press.Google Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. A164, 476490.Google Scholar
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. A158, 499521.Google Scholar
Weber, H. 1868 Ueber eine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math. (Crelle) 68, 286–292. Berlin.Google Scholar
Wolibner, W. 1933 Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37, 698726.Google Scholar
Yakubovich, E. I. & Zenkovich, D. A. 2001 Matrix approach to Lagrangian fluid dynamics. J. Fluid Mech. 443, 167196.CrossRefGoogle Scholar
Zheligovsky, V. 2011 A priori bounds for Gevrey–Sobolev norms of space-periodic three-dimensional solutions to equations of hydrodynamic type. Adv. Diff. Equ. 16, 955976; arXiv:1001.4237 [math.AP].Google Scholar
Zygmund, A. 2002 Trigonometric Series. 3rd edn Cambridge University Press.Google Scholar