Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:03:16.316Z Has data issue: false hasContentIssue false

Thrust, drag and wake structure in flapping compliant membrane wings

Published online by Cambridge University Press:  15 January 2019

Gali Alon Tzezana*
Affiliation:
Brown University, School of Engineering, Providence, RI 02912, USA
Kenneth S. Breuer
Affiliation:
Brown University, School of Engineering, Providence, RI 02912, USA
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical framework to characterize the steady and unsteady aeroelastic behaviour of compliant membrane wings under different conditions. We develop an analytic model based on thin airfoil theory coupled with a membrane equation. Adopting a numerical solution to the model equations, we study the effects of wing compliance, inertia and flapping kinematics on aerodynamic performance. The effects of added mass and fluid damping on a flapping membrane are quantified using a simple damped oscillator model. As the flapping frequency is increased, membranes go through a transition from thrust to drag around the resonant frequency, and this transition is earlier for more compliant membranes. The wake also undergoes a transition from a reverse von Kármán wake to a traditional von Kármán wake. The wake transition frequency is predicted to be higher than the thrust–drag transition frequency for highly compliant wings.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.Google Scholar
Alben, S. 2009 Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228 (7), 25872603.Google Scholar
Andersen, A., Bohr, T., Schnipper, T. & Walther, J. H. 2017 Wake structure and thrust generation of a flapping foil in two-dimensional flow. J. Fluid Mech. 812, R4.Google Scholar
Attar, P. J., Gordnier, R. E., Johnston, J. W., Romberg, W. A. & Parthasarathy, R. N. 2011 Aeroelastic analysis of membrane microair vehicles. Part II. Computational study of a plunging membrane airfoil. J. Vib. Acoust. 133 (2), 021009.Google Scholar
Banerjee, S. & Patil, M. 2008 Aeroelastic analysis of membrane wings. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1812. American Institute of Aeronautics and Astronautics.Google Scholar
Bergou, A. J., Swartz, S. M., Vejdani, H., Riskin, D. K., Reimnitz, L., Taubin, G. & Breuer, K. S. 2015 Falling with style: bats perform complex aerial rotations by adjusting wing inertia. PLoS Biol. 13 (11), 116.Google Scholar
Blake, R. 1983 Fish Locomotion. Cambridge University Press.Google Scholar
Bohl, D. G. & Koochesfahani, M. M. 2009 MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech. 620, 6388.Google Scholar
Cheney, J. A., Konow, N., Middleton, K. M., Breuer, K. S., Roberts, T. J., Giblin, E. L. & Swartz, S. M. 2014 Membrane muscle function in the compliant wings of bats. Bioinspir. Biomim. 9 (2), 025007.Google Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.Google Scholar
Das, A., Shukla, R. K. & Govardhan, R. N. 2016 Existence of a sharp transition in the peak propulsive efficiency of a low-pitching foil. J. Fluid Mech. 800, 307326.Google Scholar
Deng, J., Sun, L., Teng, L., Pan, D. & Shao, X. 2016 The correlation between wake transition and propulsive efficiency of a flapping foil: a numerical study. Phys. Fluids 28 (9), 094101.Google Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.Google Scholar
Drela, M. 1989 Xfoil: an analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics (ed. Mueller, T. J.), Lecture Notes in Engineering, vol. 54. Springer.Google Scholar
Fernandez-Feria, R. 2016 Linearized propulsion theory of flapping airfoils revisited. Phys. Rev. Fluids 1 (8), 084502.Google Scholar
Garrick, I. E.1936 Propulsion of a flapping and oscillating airfoil. NACA Tech. Rep. 567.Google Scholar
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77 (1), 016308.Google Scholar
Gordnier, R. E. 2009 High fidelity computational simulation of a membrane wing airfoil. J. Fluids Struct. 25 (5), 897917.Google Scholar
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.Google Scholar
Hubel, T. Y., Hristov, N. I., Swartz, S. M. & Breuer, K. S. 2012 Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. J. R. Soc. Interface 9 (71), 11201130.Google Scholar
Jaworski, J. W. & Gordnier, R. E. 2012 High-order simulations of low Reynolds number membrane airfoils under prescribed motion. J. Fluids Struct. 31, 4966.Google Scholar
Jaworski, J. W. & Gordnier, R. E. 2015 Thrust augmentation of flapping airfoils in low Reynolds number flow using a flexible membrane. J. Fluids Struct. 52, 199209.Google Scholar
Jones, K. & Platzer, M. 1997 Numerical computation of flapping-wing propulsion and power extraction. In 35th Aerospace Sciences Meeting and Exhibit, p. 826. American Institute of Aeronautics and Astronautics.Google Scholar
Kang, C.-K. & Shyy, W. 2014 Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. J. R. Soc. Interface 11 (101), 20140933.Google Scholar
Katz, J. & Plotkin, A. 2001 Low-Speed Aerodynamics. Cambridge University Press.Google Scholar
Mason, J. C. & Handscomb, D. C. 2002 Chebyshev Polynomials. Chapman and Hall/CRC.Google Scholar
Medina, C. & Kang, C. K. 2018 An analytical solution to the aeroelastic response of a two-dimensional elastic plate in axial potential flow. J. Fluid Mech. 845, R3.Google Scholar
Michelin, S. & Llewellyn Smith, S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21 (7), 071902.Google Scholar
Minami, H. 1998 Added mass of a membrane vibrating at finite amplitude. J. Fluids Struct. 12 (7), 919932.Google Scholar
Moore, M. N. J. 2014 Analytical results on the role of flexibility in flapping propulsion. J. Fluid Mech. 757, 599612.Google Scholar
Moore, M. N. J. 2015 Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing. Phys. Fluids 27 (9), 091701.Google Scholar
Moore, M. N. J. 2017 A fast Chebyshev method for simulating flexible-wing propulsion. J. Comput. Phys. 345, 792817.Google Scholar
Moored, K. W., Dewey, P. A., Boschitsch, B. M., Smits, A. J. & Haj-Hariri, H. 2014 Linear instability mechanisms leading to optimally efficient locomotion with flexible propulsors. Phys. Fluids 26 (4), 041905.Google Scholar
Morison, J., Johnson, J. & Schaaf, S. 1950 The force exerted by surface waves on piles. J. Petrol. Tech. 2 (05), 149154.Google Scholar
Newman, B. G. 1987 Aerodynamic theory for membranes and sails. Prog. Aerosp. Sci. 24 (1), 127.Google Scholar
Nielsen, J. N. 1963 Theory of flexible aerodynamic surfaces. Trans. ASME J. Appl. Mech. 30 (3), 435442.Google Scholar
Olivier, M. & Dumas, G. 2016 A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations. J. Fluids Struct. 63, 210237.Google Scholar
Païdoussis, M., Price, S. & de Langre, E. 2010 Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.Google Scholar
Paraz, F., Schouveiler, L. & Eloy, C. 2016 Thrust generation by a heaving flexible foil: resonance, nonlinearities, and optimality. Phys. Fluids 28 (1), 011903.Google Scholar
Pederzani, J. N. & Haj-Hariri, H. 2006 Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA J. 44 (11), 27732779.Google Scholar
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2015 Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430448.Google Scholar
Richards, A. J. & Oshkai, P. 2015 Effect of the stiffness, inertia and oscillation kinematics on the thrust generation and efficiency of an oscillating-foil propulsion system. J. Fluids Struct. 57, 357374.Google Scholar
Rojratsirikul, P., Wang, Z. J. & Gursul, I. 2009 Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers. Exp. Fluids 46 (5), 859872.Google Scholar
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (3), 856869.Google Scholar
Skulborstad, A. J., Swartz, S. M. & Goulbourne, N. C. 2015 Biaxial mechanical characterization of bat wing skin. Bioinspir. Biomim. 10 (3), 036004.Google Scholar
Smith, R. & Shyy, W. 1995a Computation of unsteady laminar flow over a flexible two-dimensional membrane wing. Phys. Fluids 7 (9), 21752184.Google Scholar
Smith, R. & Shyy, W. 1995b Computational model of flexible membrane wings in steady laminar flow. AIAA J. 33 (10), 17691777.Google Scholar
Smith, R. & Shyy, W. 1996 Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: a comparison with classical theory. Phys. Fluids 8 (12), 33463353.Google Scholar
Song, A., Tian, X., Israeli, E., Galvao, R., Bishop, K., Swartz, S. & Breuer, K. 2008 Aeromechanics of membrane wings with implications for animal flight. AIAA J. 46 (8), 20962106.Google Scholar
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22 (4), 041903.Google Scholar
Theodorsen, T.1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496.Google Scholar
Thomson, W. 1996 Theory of Vibration with Applications. CRC Press.Google Scholar
Thwaites, B. 1961 The aerodynamic theory of sails. I. Two-dimensional sails. Proc. R. Soc. Lond. A 261 (1306), 402422.Google Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 28352837.Google Scholar
Waldman, R. M. & Breuer, K. S. 2017 Camber and aerodynamic performance of compliant membrane wings. J. Fluids Struct. 68, 390402.Google Scholar
Wu, T. Y.-T. 1961 Swimming of a waving plate. J. Fluid Mech. 10 (3), 321344.Google Scholar
Zhang, J., Liu, N. S. & Lu, X. Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.Google Scholar