Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:38:55.509Z Has data issue: false hasContentIssue false

Three-dimensional small-scale instabilities of plane internal gravity waves

Published online by Cambridge University Press:  29 January 2019

Sasan John Ghaemsaidi*
Affiliation:
Huntsville, AL 35806, USA
Manikandan Mathur*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We study the evolution of three-dimensional (3-D), small-scale, small-amplitude perturbations on a plane internal gravity wave using the local stability approach. The plane internal wave is characterised by its non-dimensional amplitude, $A$, and the angle the group velocity vector makes with gravity, $\unicode[STIX]{x1D6F7}$. For a given $(A,\unicode[STIX]{x1D6F7})$, the local stability equations are solved on the periodic fluid particle trajectories to obtain growth rates for all two-dimensional (2-D) and 3-D perturbation wave vectors. For small $A$, the local stability approach recovers previous results of 2-D parametric subharmonic instability (PSI) while offering new insights into 3-D PSI. Higher-order triadic resonances, and associated deviations from them, are also observed at small $A$. Moreover, for small $A$, purely transverse instabilities resulting from parametric resonance are shown to occur at select values of $\unicode[STIX]{x1D6F7}$. The possibility of a non-resonant instability mechanism for transverse perturbations at finite $A$ allows us to derive a heuristic, modified gravitational instability criterion. We then study the extension of small $A$ to finite $A$ internal wave instabilities, where we recover and build upon existing knowledge of small-scale, small-amplitude internal wave instabilities. Four distinct regions of the $(A,\unicode[STIX]{x1D6F7})$-plane based on the dominant instability modes are identified: 2-D PSI, 3-D oblique, quasi-2-D shear-aligned, and 3-D transverse. Our study demonstrates the local stability approach as a physically insightful and computationally efficient tool, with potentially broad utility for studies that are based on other theoretical approaches and numerical simulations of small-scale instabilities of internal waves in various settings.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H., MacKinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 34, L24601.10.1029/2007GL031566Google Scholar
Aravind, H. M., Mathur, M. & Dubos, T.2017 Short-wavelength secondary instabilities in homogeneous and stably stratified shear flows. arXiv:1712.05868v2.Google Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.10.1103/PhysRevLett.57.2160Google Scholar
Bayly, B. J., Holm, D. D. & Lifschitz, A. 1996 Three-dimensional stability of elliptical vortex columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354, 895926.Google Scholar
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers. Springer.10.1007/978-1-4757-3069-2Google Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.10.1017/jfm.2013.78Google Scholar
Chicone, C. 2000 Ordinary Differential Equations with Applications. Springer.Google Scholar
Constantin, A. & Germain, P. 2013 Instability of some equatorially trapped waves. J. Geophys. Res.: Oceans 118, 28022810.10.1002/jgrc.20219Google Scholar
Dauxois, T., Joubaud, S., Odier, P. & Venaille, A. 2018 Instabilities of internal gravity wave beams. Annu. Rev. Fluid Mech. 50, 128.10.1146/annurev-fluid-122316-044539Google Scholar
Drazin, P. G. 1977 On the instability of an internal gravity wave. Proc. R. Soc. Lond. A 356, 411432.10.1098/rspa.1977.0142Google Scholar
Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.10.1017/S0022112010002417Google Scholar
Fritts, D. C. & Yuan, L. 1989 An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts. J. Geophys. Res. 94, 1845518466.10.1029/JD094iD15p18455Google Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary layers. J. Fluid Mech. 571, 221233.10.1017/S0022112006002898Google Scholar
Garrett, C. & Munk, W. 1975 Space-time scales of internal waves: a progress report. J. Geophys. Res. 80, 291297.10.1029/JC080i003p00291Google Scholar
Gayen, B. & Sarkar, S. 2013 Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. J. Geophys. Res.: Oceans 118, 46894698.10.1002/jgrc.20321Google Scholar
Godeferd, F. S., Cambon, C. & Leblanc, S. 2001 Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Stuart vortices with external rotation. J. Fluid Mech. 449, 137.10.1017/S0022112001006358Google Scholar
Hasselmann, K. 1967 A criterion for nonlinear wave stability. J. Fluid Mech. 30, 737739.10.1017/S0022112067001739Google Scholar
Hines, C. O. 1971 Generalizations of the Richardson criterion for the onset of atmospheric turbulence. Q. J. R. Meteorol. Soc. 97, 429439.10.1002/qj.49709741405Google Scholar
Ionescu-Kruse, D. 2014 Instability of edge waves along a sloping beach. J. Differ. Equ. 256, 39994012.10.1016/j.jde.2014.03.009Google Scholar
Ionescu-Kruse, D. 2015 Short-wavelength instabilities of edge waves in stratified water. Contin. Discr. Dyn. Syst. 35, 20532066.10.3934/dcds.2015.35.2053Google Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech. 757, 381402.10.1017/jfm.2014.509Google Scholar
Kataoka, T. & Akylas, T. R. 2013 Stability of internal gravity wave beams to three-dimensional modulations. J. Fluid Mech. 736, 6790.10.1017/jfm.2013.527Google Scholar
Klostermeyer, J. 1982 On parametric instabilities of finite-amplitude internal gravity waves. J. Fluid Mech. 119, 367377.10.1017/S0022112082001396Google Scholar
Klostermeyer, J. 1991 Two- and three-dimensional parametric instabilities in finite-amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn. 61, 125.10.1080/03091929108229035Google Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.10.1017/S0022112005007524Google Scholar
Kundu, P. K., Cohen, I. M. & Dowling, D. R. 2012 Fluid Mechanics. Elsevier.Google Scholar
Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30, 23392342.10.1063/1.866124Google Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2018 Parametric instability and wave turbulence driven by tidal excitation of internal waves. J. Fluid Mech. 840, 498529.10.1017/jfm.2018.18Google Scholar
Leblanc, S. 1997 Stability of stagnation points in rotating flows. Phys. Fluids 9, 35663569.10.1063/1.869427Google Scholar
Leblanc, S. 2004 Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245254.10.1017/S0022112004008444Google Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3, 26442651.10.1063/1.858153Google Scholar
Lombard, P. N. & Riley, J. J. 1996 Instability and breakdown of internal gravity waves. I. Linear stability analysis. Phys. Fluids 8, 32713287.10.1063/1.869117Google Scholar
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28. 9° . Geophys. Res. Lett. 32 (15), L15605.10.1029/2005GL023376Google Scholar
Mathur, M., Carter, G. S. & Peacock, T. 2016 Internal tide generation using green function analysis: to WKB or not to WKB? J. Phys. Oceanogr. 46, 21572168.10.1175/JPO-D-15-0145.1Google Scholar
Mathur, M., Ortiz, S., Dubos, T. & Chomaz, J. M. 2014 Effects of an axial flow on the centrifugal, elliptic and hyperbolic instabilities in Stuart vortices. J. Fluid Mech. 758, 565585.10.1017/jfm.2014.534Google Scholar
Mccomas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 13971412.10.1029/JC082i009p01397Google Scholar
Mcewan, A. D. & Robinson, R. M. 1975 Parametric instability of internal gravity waves. J. Fluid Mech. 67, 667687.10.1017/S0022112075000547Google Scholar
Mercier, M. J., Mathur, M., Gostiaux, L., Gerkema, T., Magalhães, J. M., Da Silva, J. C. B. & Dauxois, T. 2012 Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments. J. Fluid Mech. 704, 3760.10.1017/jfm.2012.191Google Scholar
Mied, R. P. 1976 The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J. Fluid Mech. 78, 763784.10.1017/S0022112076002735Google Scholar
Miyazaki, T. 1993 Elliptical instability in a stably stratified rotating fluid. Phys. Fluids A 5, 27022709.10.1063/1.858733Google Scholar
Miyazaki, T. & Fukumoto, Y. 1992 Three-dimensional instability of strained vortices in a stably stratified fluid. Phys. Fluids A 4, 25152522.10.1063/1.858438Google Scholar
Nagarathinam, D., Sameen, A. & Mathur, M. 2015 Centrifugal instability in non-axisymmetric vortices. J. Fluid Mech. 769, 2645.10.1017/jfm.2015.94Google Scholar
Nayfeh, A. H. & Mook, D. T. 1995 Nonlinear Oscillations. Wiley.10.1002/9783527617586Google Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Hawaiian ridge. Science 301 (5631), 355357.10.1126/science.1085837Google Scholar
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.10.1063/1.870424Google Scholar
Sonmor, L. J. & Klaassen, G. P. 1996 Higher-order resonant instabilities of internal gravity waves. J. Fluid Mech. 324, 123.10.1017/S0022112096007811Google Scholar
Sonmor, L. J. & Klaassen, G. P. 1997 Toward a unified theory of gravity wave stability. J. Atmos. Sci. 54, 26552680.10.1175/1520-0469(1997)054<2655:TAUTOG>2.0.CO;22.0.CO;2>Google Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.10.1146/annurev.fluid.34.090601.130953Google Scholar
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.10.1017/S0022112003003902Google Scholar
Thorpe, S. A. 1994 Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech. 260, 333350.10.1017/S002211209400354XGoogle Scholar
Varma, D. & Mathur, M. 2017 Internal wave resonant triads in finite-depth non-uniform stratifications. J. Fluid Mech. 824, 286311.10.1017/jfm.2017.343Google Scholar