Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T07:08:50.032Z Has data issue: false hasContentIssue false

Three-dimensional natural convection in a confined porous medium heated from below

Published online by Cambridge University Press:  19 April 2006

Roland N. Horne
Affiliation:
Department of Petroleum Engineering, Stanford University, California 94305 Current address: Department of Theoretical and Applied Mechanics, University of Auckland, New Zealand.

Abstract

Previous analyses of natural convection in a porous medium have drawn seemingly contradictory conclusions as to whether the motion is two- or three-dimensional. This investigation uses numerical results to show the relationship between previous contending observations, and demonstrates that there exists more than one mode of convection for any particular physical configuration and Rayleigh number. In some cases, a particular flow situation may be stable even though it does not maximize the energy transfer across the system.

The methods used are based on the efficient numerical solution of the governing equations, formulated with the definition of a vector potential. This approach is shown to be superior to formulating the equations in terms of pressure.

For a cubic region the flow pattern at a particular value of the Rayleigh number is not unique and is determined by the initial conditions. In some cases there exist four alternatives, two- and three-dimensional, steady and unsteady.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 J. Comp. Phys. 1, 119.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Beck, J. L. 1972 Phys. Fluids 15, 1377.
Bories, S., Combranous, M. A. & Jaffrenou, J. Y. 1972 Comptes Rendus Acad. Sci. Paris A 275, 857.
Busbee, B. L., Golub, C. H. & Nielson, C. W. 1970 SIAM J. Num. Anal. 7, 627.
Caltagirone, J. P. 1974 Comptes Rendus Acad. Sci. Paris B 278, 259.
Caltagirone, J. P. 1975 J. Fluid Mech. 72, 269.
Caltagirone, J. P., Cloupeau, M. & Combarnous, M. A. 1971 Comptes Rendus Acad. Sci. Paris B 273, 833.
Combarnous, M. A. 1972 Comptes Rendus Acad. Sci. Paris A 275, 1375.
Combarnous, M. A. & Lefur, B. 1969 Comptes Rendus Acad. Sci. Paris B 269, 1009.
Elder, J. W. 1967 J. Fluid Mech. 27, 29.
Gupta, V. P. & Joseph, D. D. 1973 J. Fluid Mech. 57, 491.
Hirsh, R. S. 1975 J. Comp. Phys. 19, 90.
Holst, P. H. & Aziz, K. 1972 Int. J. Heat Mass Transfer 15, 73.
Horne, R. N. 1978 Three-dimensional natural convection in a confined porous medium heated from below. Presented at the A.I.A.A.-A.S.M.E. Thermophysics & Heat Transfer Conference, Palo Alto, California, 24–26 May. Paper A.S.M.E. 78-HT-56.
Horne, R. N. & O'Sullivan, M. J. 1974 J. Fluid Mech. 66, 339.
Horne, R. N. & O'Sullivan, M. J. 1978 Phys. Fluids 21, 1260.
Horton, C. W. & Rogers, F. T. 1945 J. Appl. Phys. 16, 367.
Katto, Y. & Masuoka, T. 1967 Int. J. Heat Mass Transfer 10, 297.
Lapwood, E. R. 1948 Proc. Camb. Phil. Soc. 44, 508.
Orszag, S. A. & Israeli, M. 1974 Ann. Rev. Fluid Mech. 6, 281.
Palm, E., Weber, J. E. & Kvernvold, O. 1972 J. Fluid Mech. 54, 153.
Platzman, G. W. 1965 J. Fluid Mech. 23, 481.
Rubin, H. 1974 J. Hydrology 21, 173.
Schubert, G. & Straus, J. M. 1978 Three-dimensional and multi-cellular steady and unsteady convection in fluid-saturated porous media at high Rayleigh numbers. J. Fluid Mech. To be published.Google Scholar
Straus, J. M. 1974 J. Fluid Mech. 64, 51.
Straus, J. M. & Schubert, G. 1977 J. Geophys. Res. 82, 325.
Straus, J. M. & Schubert, G. 1978 J. Fluid Mech. 87, 385.
Yih, C. S. 1969 Fluid Mechanics. New York: McGraw-Hill.
Zebib, A. & Kassoy, D. R. 1978 Phys. Fluids 21, 1.