Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:07:54.771Z Has data issue: false hasContentIssue false

Three-dimensional instability of a flow past a sphere: Mach evolution of the regular and Hopf bifurcations

Published online by Cambridge University Press:  24 September 2018

A. Sansica*
Affiliation:
Centre National d’Études Spatiales, Direction des Lanceurs, 52 rue Jacques Hillairet, Paris 75012, France DynFluid Laboratory, Arts et Métiers, 151 Bd. de l’Hopital, Paris 75013, France
J.-Ch. Robinet
Affiliation:
DynFluid Laboratory, Arts et Métiers, 151 Bd. de l’Hopital, Paris 75013, France
F. Alizard
Affiliation:
LMFA, Université Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, 43 Bd. du 11 Novembre 1918, Villeurbanne 69100, France
E. Goncalves
Affiliation:
Institut Pprime, ISAE-ENSMA, 1 Av. Clément Ader, Futuroscope Chasseneuil BP 40109 86961, France
*
Email address for correspondence: [email protected]

Abstract

A fully three-dimensional linear stability analysis is carried out to investigate the unstable bifurcations of a compressible viscous fluid past a sphere. A time-stepper technique is used to compute both equilibrium states and leading eigenmodes. In agreement with previous studies, the numerical results reveal a regular bifurcation under the action of a steady mode and a supercritical Hopf bifurcation that causes the onset of unsteadiness but also illustrate the limitations of previous linear approaches, based on parallel and axisymmetric base flow assumptions, or weakly nonlinear theories. The evolution of the unstable bifurcations is investigated up to low-supersonic speeds. For increasing Mach numbers, the thresholds move towards higher Reynolds numbers. The unsteady fluctuations are weakened and an axisymmetrization of the base flow occurs. For a sufficiently high Reynolds number, the regular bifurcation disappears and the flow directly passes from an unsteady planar-symmetric solution to a stationary axisymmetric stable one when the Mach number is increased. A stability map is drawn by tracking the bifurcation boundaries for different Reynolds and Mach numbers. When supersonic conditions are reached, the flow becomes globally stable and switches to a noise-amplifier system. A continuous Gaussian white noise forcing is applied in front of the shock to examine the convective nature of the flow. A Fourier analysis and a dynamic mode decomposition show a modal response that recalls that of the incompressible unsteady cases. Although transition in the wake does not occur for the chosen Reynolds number and forcing amplitude, this suggests a link between subsonic and supersonic dynamics.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkervik, E., Brandt, L., Henningson, D. S., Hoefpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.Google Scholar
Arnoldi, W. E. 1951 The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Maths 9, 1729.Google Scholar
Bagheri, S., Åkervik, E., Brandt, L. & Henningson, D. S. 2009 Matrix-free methods for the stability and control of boundary layers. AIAA J. 45, 10571068.Google Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75, 750756.Google Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14351458.Google Scholar
Beneddine, S., Mettot, C. & Sipp, D. 2015 Global stability analysis of underexpanded screeching jets. Eur. J. Mech. (B/Fluids) 49, 392399.Google Scholar
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.Google Scholar
Bouchet, G., Mebarek, M. & Duŝek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321336.Google Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.Google Scholar
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.Google Scholar
Citro, V., Siconolfi, L., Fabre, D., Giannetti, F. & Luchini, P. 2017 Stability and sensitivity analysis of the secondary instability in the sphere wake. AIAA J. 55 (11), 36613668.Google Scholar
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224 (2), 924940.Google Scholar
Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. 1994 Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82101.Google Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 14.Google Scholar
Ghidersa, B. & Dusek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.Google Scholar
Goncalves, E. & Houdeville 2009 Numerical simulations of a transport-aircraft configuration. J. Comput. Fluid Dyn. 23 (6), 449459.Google Scholar
Guiho, F., Alizard, F. & Robinet, J.-C. 2016 Instabilities in oblique shock wave/laminar boundary-layer interactions. J. Fluid Mech. 789, 135.Google Scholar
Gumowski, K., Miedzik, J., Goujon-Durand, S., Jenffer, P. & Wesfreid, J. E. 2008 Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. Lett. 77, 055308(R).Google Scholar
Jameson, A.1991 Time-dependent calculations using multigrid with applications to unsteady flows past airfoils and wings. AIAA Paper, 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA. AIAA.Google Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.Google Scholar
Jovanovic, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26, 024103.Google Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C.1997 Arpack user’s guide: Solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. Tech. Note.Google Scholar
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.Google Scholar
Lomax, H. & Steger, J. L. 1975 Relaxation methods in fluid mechanics. Annu. Rev. Fluid Mech. 7, 6388.Google Scholar
Mack, C. J., Schmid, P. J. & Sesterhenn, J. L. 2008 Global stability of swept flow around a parabolic body: connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205214.Google Scholar
Magarvey, R. H. & Bishop, R. L. 1961 Transition ranges for three-dimensional wakes. Can. J. Phys. 39, 14181422.Google Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.Google Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2007 Unsteadiness in the wake of the sphere: receptivity and weakly nonlinear global stability analysis. In Proc. 5th Conference on Bluff Body Wakes and Vortex-Induced Vibrations (Bahia, Brazil). BBVIV.Google Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2009 Unsteadiness in the wake of disks and spheres: instability, receptivity and control using direct and adjoint global stability analyses. J. Fluids Struct. 25, 601616.Google Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 Effect of compressibility on the global stability of axisymmetric wake flows. J. Fluid Mech. 660, 499526.Google Scholar
Morzyński, M.2009 Global flow stability results for the flow around a sphere. http://stanton.ice.put.poznan.pl/morzynski/2009/08/24/global-flow-stability-results.Google Scholar
Nagata, T., Nonomura, T., Takahashi, S. & Fukuda, K. 2016 Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation. Phys. Fluids 28, 056101.Google Scholar
Nagata, T., Nonomura, T., Takahashi, S., Mizuno, Y. & Fukuda, K. 2018 Direct numerical simulation of flow past a sphere at a Reynolds number between 500 and 1000 in compressible flows. In AIAA 2018-0381 (ed. AIAA SciTech Forum AIAA Aerospace Sciences Meeting) Kissimmee, FL.Google Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.Google Scholar
Nichols, J. W., Lele, S. K. & Moin, P. 2009 Global mode decomposition of supersonic jet noise. In CTR Annu. Res. Briefs. Center for Turbulence Research.Google Scholar
Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 81 (1), 8083.Google Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.Google Scholar
Ray, P. K. & Lele, S. K. 2007 Sound generated by instability wave/shock-cell interaction in supersonic jets. J. Fluid Mech. 587, 173215.Google Scholar
Robinet, J.-C. 2007 Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach. J. Fluid Mech. 579, 85112.Google Scholar
Roe, P. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (2), 357372.Google Scholar
Sartor, F., Mettoc, C., Bur, R. & Sipp, D. 2015 Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550577.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical experimental data. J. Fluid Mech. 656, 528.Google Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14, 38463854.Google Scholar
Szaltys, P., Chrust, M., Goujon-Durand, S., Tuckerman, L. S. & Wesfreid, J. E. 2012 Nonlinear evolution of instabilities behind spheres and disks. J. Fluids Struct. 28, 483487.Google Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11 (10), 11041108.Google Scholar
Taneda, S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106 . J. Fluid Mech. 85, 187192.Google Scholar
Tezuka, A. & Suzuki, K. 2006 Three-dimensional global linear stability analysis of flow around a spheroid. AIAA J. 44 (8), 16971708.Google Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.Google Scholar
Tomboulides, A. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.Google Scholar
Tomboulides, A. G., Orszag, S. A. & Karniadakis, G. E. 1993 Direct and large-eddy simulation of axisymmetric wakes. In AIAA 31st Aerospace Sciences Meeting & Exhibit, Reno, NV, USA. AIAA.Google Scholar
Wu, J.-S. & Faeth, G. M. 1993 Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA J. 31, 14481455.Google Scholar