Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T14:09:56.022Z Has data issue: false hasContentIssue false

Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a basally heated spherical shell

Published online by Cambridge University Press:  26 April 2006

David Bercovici
Affiliation:
Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI 96822, USA
Gerald Schubert
Affiliation:
Department of Earth and Space Sciences, University of California, Los Angeles, CA 90024, USA
Gary A. Glatzmaier
Affiliation:
Earth and Environmental Sciences Division, Los Alamos National Laboratory, NM 87545, USA

Abstract

A numerical investigation is made of the effects of compressibility on three-dimensional thermal convection in a basally heated, highly viscous fluid spherical shell with an inner to outer radius ratio of approximately 0.55, characteristic of the Earth's whole mantle. Compressibility is implemented with the anelastic approximation and a hydrostatic adiabatic reference state whose bulk modulus is a linear function of pressure. The compressibilities studied range from Boussinesq cases to compressibilities typical of the Earth's whole mantle. Compressibility has little effect on the spatial structure of steady convection when the superadiabatic temperature drop across the shell ΔTsa is comparable to a characteristic adiabatic temperature. When ΔTsa is approximately an order of magnitude smaller than the adiabatic temperature, compressibility is significant. For all the non-Boussinesq cases, the regular polyhedral convective patterns that exist at large ΔTsa break down at small ΔTsa into highly irregular patterns; as ΔTsa decreases convection becomes penetrative in the upper portion of the shell and is strongly time dependent at Rayleigh numbers only ten times the critical Rayleigh number, 〈Racr. Viscous heating in the compressible solutions is concentrated around the upwelling plumes and is greatest near the top and bottom of the shell. Solutions with regular patterns (and large ΔTsa) remain steady up to fairly high Rayleigh numbers (100〈Racr), while solutions with irregular convective patterns are time dependent at similar Rayleigh numbers. Compressibility affects the pattern evolution of the irregular solutions, producing fewer upwelling plumes with increasing compressibility.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K.: 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Baumgardner, J. R.: 1985 Three-dimensional treatment of convective flow in the Earth's mantle. J. Statist. Phys. 39, 501511.Google Scholar
Baumgardner, J. R.: 1988 Application of supercomputers to 3-d mantle convection. In The Physics of the Planets (ed. S. K. Runcorn), pp. 199231. John Wiley.
Bercovici, D.: 1989 A numerical investigation of thermal convection in highly viscous spherical shells with applications to mantle dynamics in the Earth and other terrestrial planets. Ph.D. dissertation, University of California, Los Angeles.
Bercovici, D., Schubert, G. & Glatzmaier, G. A., 1989a Three-dimensional spherical models of convection in the Earth's mantle. Science 244, 950955.Google Scholar
Bercovici, D., Schubert, G. & Glatzmaier, G. A., 1989b Influence of heating mode on three-dimensional mantle convection. Geophys. Res. Lett. 16, 617620.Google Scholar
Bercovici, D., Schubert, G. & Glatzmaier, G. A., 1991 Modal growth and coupling in three-dimensional spherical convection. Geophys. Astrophys. Fluid Dyn. 61, 149159.Google Scholar
Bercovici, D., Schubert, G., Glatzmaier, G. A. & Zebib, A., 1989c Three-dimensional thermal convection in a spherical shell. J. Fluid Mech. 206, 75104.Google Scholar
Bercovici, D., Schubert, G. & Zebib, A., 1988 Geoid and topography for infinite Prandtl number convection in a spherical shell. J. Geophys. Res. 93, 64306436.Google Scholar
Busse, F. H.: 1975 Patterns of convection in spherical shells. J. Fluid Mech. 72, 6785.Google Scholar
Busse, F. H. & Riahi, N., 1982 Patterns of convection in spherical shells. Part 2. J. Fluid Mech. 123, 283301.Google Scholar
Busse, F. H. & Riahi, N., 1988 Mixed-mode patterns of bifurcations from spherically symmetric basic states. Nonlinearity 1, 379388.Google Scholar
Carrigan, C. R.: 1985 Convection in an internally heated, high Prandtl number fluid: A laboratory study. Geophys. Astrophys. Fluid Dyn. 32, 121.Google Scholar
Chandrasekhar, S.: 1939 An Introduction to the Study of Stellar Structure. University of Chicago Press.
Chandrasekhar, S.: 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Dziewonski, A. M.: 1984 Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. 89, 59295952.Google Scholar
Dziewonski, A. M. & Anderson, D. L., 1981 Preliminary reference earth model (PREM). Phys. Earth Planet. Inter. 25, 297356.Google Scholar
Dziewonski, A. M. & Woodhouse, J. H., 1987 Global images of the earth's interior. Science 236, 3748.Google Scholar
Glatzmaier, G. A.: 1984 Numerical simulations of stellar convective dynamos I. The model and method. J. Comput. Phys. 55, 461.Google Scholar
Glatzmaier, G. A.: 1988 Numerical simulations of mantle convection: time-dependent, three-dimensional, compressible, spherical shell. Geophys. Astrophys. Fluid Dyn. 43, 223264.Google Scholar
Glatzmaier, G. A., Schubert, G. & Bercovici, D., 1990 Chaotic subduction-like downflows in a spherical model of convection in the Earth's mantle. Nature 347, 274277.Google Scholar
Gough, D. O.: 1969 The anelastic approximation for thermal convection. J. Atmos. Sci., 26, 448456.Google Scholar
Graham, E.: 1975 Numerical simulation of two-dimensional compressible convection. J. Fluid Mech. 70, 689703.Google Scholar
Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M., 1985 Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541545.Google Scholar
Hart, J. E., Glatzmaier, G. A. & Toomre, J., 1986a Space laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519544.Google Scholar
Hart, J. E., Toomre, J., Deane, A. E., Hurlburt, N. E., Glatzmaier, G. A., Fichtl, F., Leslie, F., Fowlis, W. W. & Gilman, P. A., 1986b Laboratory experiments on planetary and stellar convection performed on Spacelab 3. Science 234, 61.Google Scholar
Hewitt, J. M., Mckenzie, D. P. & Weiss, N. O., 1975 Dissipative heating in convective flows. J. Fluid Mech. 68, 721738.Google Scholar
Houseman, G.: 1988 The dependence of convection planform on mode of heating. Nature 332, 346349.Google Scholar
Hsui, A. T., Turcotte, D. L. & Torrance, K. E., 1972 Finite amplitude thermal convection within a self-gravitating fluid sphere. Geophys. Fluid Dyn. 3, 3544.Google Scholar
Jarvis, G. T. & Mckenzie, D. P., 1980 Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96, 515583.Google Scholar
Kaula, W. M.: 1990 Venus: A contrast in evolution to Earth. Science 247, 11911196.Google Scholar
Kroger, P. M., Lyzenga, A., Wallace, K. S. & Davidson, J. M., 1987 Tectonic motion in the western United States inferred from very long baseline interferometry measurements, 1980–1986. J. Geophys. Res. 92, 1415114163.Google Scholar
Machetel, P. & Rabinowicz, M., 1985 Transitions to a two mode axisymmetrical spherical convection: Application to the Earth's mantle. Geophys. Res. Lett. 12, 227231.Google Scholar
Machetel, P., Rabinowicz, M. & Bernadet, P., 1986 Three-dimensional convection in spherical shells. Geophys. Astrophys. Fluid Dyn. 37, 5784.Google Scholar
Machetel, P. & Yuen, D. A., 1986 The onset of time dependent convection in spherical shells as a clue to chaotic convection in the Earth's mantle. Geophys. Res. Lett. 13, 14701473.Google Scholar
Machetel, P. & Yuen, D. A., 1987 Chaotic axisymmetrical spherical convection and large-scale circulation. Earth Planet. Sci. Lett. 86, 93.Google Scholar
Machetel, P. & Yuen, D. A., 1988 Infinite Prandtl number spherical shell convection. In Mathematical Geophysics (ed. N. J. Vaar et al.), pp. 265290. D. Reidel.
Machetel, P. & Yuen, D. A., 1989 Penetrative convective flows induced by internal heating and mantle compressibility. J. Geophys. Res. 94, 1060910626.Google Scholar
Minster, J. B. & Jordan, T. H., 1978 Present-day plate motions. J. Geophys. Res. 83, 53315354.Google Scholar
Minster, J. B. & Jordan, T. H., 1987 Vector constraints on western U. S. deformation from space geodesy, neotectonics and plate motions. J. Geophys. Res. 92, 47984804.Google Scholar
Murnaghan, F. D.: 1951 Finite Deformation of an Elastic Solid. John Wiley.
Olson, P.: 1981 Mantle convection with spherical effects. J. Geophys. Res. 86, 48814890.Google Scholar
Olson, P., Silver, P. G. & Carlson, R. W., 1990 The large-scale structure of convection in the Earth's mantle. Nature 344, 209215.Google Scholar
Oxburgh, E. R. & Turcotte, D. L., 1978 Mechanisms of continental drift. Rep. Prog. Phys. 41, 12491312.Google Scholar
Peltier, W. R.: 1972 Penetrative convection in the planetary mantle. Geophys. Fluid Dyn. 5, 4788.Google Scholar
Quareni, F. & Yuen, D. A., 1988 Mean field methods in mantle convection. In Mathematical Geophysics (ed. N. J. Vaar et al.), pp. 227264. D. Reidel.
Roberts, P. H.: 1987 Convection in spherical systems. In Irreversible Phenomena and Dynamical Systems Analysis in Geosciences (eds C. Nicolis & G. Nicolis). D. Reidel.
Runcorn, S. K.: 1967 Flow in the mantle inferred from the low degree harmonics of the geopotential. Geophys. J. R. Astron. Soc. 14, 375384.Google Scholar
Schubert, G.: 1979 Subsolidus convection in the mantles of the terrestrial planets. Ann. Rev. Earth Planet. Sci. 7, 289342.Google Scholar
Schubert, G., Bercovici, D. & Glatzmaier, G. A., 1990 Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection. J. Geophys. Res. 95, 1410514129.Google Scholar
Schubert, G., Stevenson, D. & Cassen, P., 1980 Whole planet cooling and the radiogenic heat source contents of the earth and moon. J. Geophys. Res. 85, 25312538.Google Scholar
Schubert, G. & Zebib, A., 1980 Thermal convection of an internally heated infinite Prandtl number fluid in a spherical shell. Geophys. Astrophys. Fluid Dyn. 15, 65.Google Scholar
Silver, P. G., Carlson, R. W. & Olson, P., 1988 Deep slabs, geochemical heterogeneity and the large-scale structure of mantle convection: investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci. 16, 477541.Google Scholar
Solheim, L. P. & Peltier, W. R., 1990 Heat transfer and the onset of chaos in an axisymmetric anelastic model of whole mantle convection. Geophys. Astrophys. Fluid. Dyn. 53, 205255.Google Scholar
Stacey, F. D.: 1977 Physics of the Earth. Wiley.
Steinbach, V., Hansen, U. & Ebel, A., 1989 Compressible convection in the Earth's mantle: A comparison of different approaches. Geophys. Res. Lett. 16, 633636.Google Scholar
Stevenson, D. J., Spohn, T. & Schubert, G., 1983 Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466489.Google Scholar
Travis, B., Olson, P. & Schubert, G., 1990 The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection. J. Fluid Mech. 216, 7191.Google Scholar
Turcotte, D. L., Hsui, A. T., Torrance, K. E. & Schubert, G., 1974 Influence of viscous dissipation on Benard convection. J. Fluid Mech. 64, 369374.Google Scholar
Turcotte, D. L. & Schubert, G., 1982 Geodynamics. Wiley & Sons.
Weinstein, S. & Olson, P., 1990 Planforms in thermal convection with internal heat sources at large Rayleigh and Prandtl numbers. Geophys. Res. Lett. 17, 239242.Google Scholar
Whitehead, J. A. & Parsons, B., 1978 Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys. Astrophys. Fluid Dyn. 19, 201217.Google Scholar
Woodhouse, J. H. & Dziewonski, A. M., 1984 Mapping the upper mantle: Three dimensional modeling of earth structure by inversion of seismic wave-forms. J. Geophys. Res. 89, 59535986.Google Scholar
Young, R. E.: 1974 Finite-amplitude thermal convection in a spherical shell. J. Fluid Mech. 63, 695721.Google Scholar
Zebib, A., Goyal, A. K. & Schubert, G., 1985 Convective motions in a spherical shell. J. Fluid Mech. 152, 3948.Google Scholar
Zebib, A., Schubert, G. & Straus, J. M., 1980 Infinite Prandtl number thermal convection in a spherical shell. J. Fluid Mech. 97, 257.Google Scholar
Zebib, A., Schubert, G., Dein, J. L. & Paliwal, R. C., 1983 Character and stability of axisymmetric thermal convection in spheres and spherical shells. Geophys. Astrophys. Fluid Dyn. 23, 142.Google Scholar