Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T05:46:04.808Z Has data issue: false hasContentIssue false

Thin liquid films in a funnel

Published online by Cambridge University Press:  11 August 2021

T.-S. Lin
Affiliation:
Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
J.A. Dijksman
Affiliation:
Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
L. Kondic*
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102, USA
*
Email address for correspondence: [email protected]

Abstract

We explore flow of a completely wetting fluid in a funnel, with particular focus on contact line instabilities at the fluid front. While the flow in a funnel may be related to a number of other flow configurations as limiting cases, understanding its stability is complicated due to the presence of additional azimuthal curvature, as well as due to convergent flow effects imposed by the geometry. The convergent nature of the flow leads to thickening of the film, therefore influencing its stability properties. In this work, we analyse these stability properties by combining physical experiments, asymptotic modelling, self-similar type of analysis and numerical simulations. We show that an appropriate long-wave-based model, supported by the input from experiments, simulations and linear stability analysis that originates from the flow down an incline plane, provides a basic insight allowing an understanding of the development of contact line instability and emerging length scales.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Backholm, M., Benzaquen, M., Salez, T., Raphaël, E. & Dalnoki-Veress, K. 2014 Capillary levelling of a cylindrical hole in a viscous film. Soft Matt. 10, 25502558.CrossRefGoogle Scholar
Balestra, G., Badaoui, M., Ducimetière, Y.-M. & Gallaire, F. 2019 Fingering instability on curved substrates: optimal initial film and substrate perturbations. J. Fluid Mech. 868, 726761.CrossRefGoogle Scholar
Bertozzi, A.L. & Brenner, M.P. 1997 Linear stability and transient growth in driven contact lines. Phys. Fluids 9, 530.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739.CrossRefGoogle Scholar
Bostwick, J.B., Dijksman, J.A. & Shearer, M. 2017 Wetting dynamics of a collapsing fluid hole. Phys. Rev. Fluids 2, 014006.CrossRefGoogle Scholar
Brandão, R., Fontana, J.V. & Miranda, J.A. 2014 Suppression of viscous fingering in nonflat Hele-Shaw cells. Phys. Rev. E 90, 053003.CrossRefGoogle ScholarPubMed
Craster, R.V. & Matar, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131.CrossRefGoogle Scholar
Davis, S.H. 1980 Moving contact lines and rivulet instabilities. Part I: the static rivulet. J. Fluid Mech. 98, 225242.CrossRefGoogle Scholar
De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science & Business Media.CrossRefGoogle Scholar
Diez, J.A., González, A. & Kondic, L. 2009 On the breakup of fluid rivulets. Phys. Fluids 21, 082105.CrossRefGoogle Scholar
Diez, J.A., Gratton, J. & Gratton, J. 1992 Self-similar solutions of the second kind for a convergent viscous gravity current. Phys. Fluids A 4, 1148.CrossRefGoogle Scholar
Diez, J.A., Kondic, L. & Bertozzi, A.L. 2001 Global models for moving contact lines. Phys. Rev. E 63, 011208.CrossRefGoogle ScholarPubMed
Dijksman, J.A., Mukhopadhyay, S., Behringer, R.P. & Witelski, T.P. 2019 Thermal Marangoni-driven dynamics of spinning liquid films. Phys. Rev. Fluids 4, 084103.CrossRefGoogle Scholar
Dukler, Y., Ji, H., Falcon, C. & Bertozzi, A.L. 2020 Theory for undercompressive shocks in tears of wine. Phys. Rev. Fluids 5, 034002.CrossRefGoogle Scholar
Fraysse, N. & Homsy, G.M. 1994 An experimental study of rivulet instabilities in centrifugal spin coating of viscous Newtonian and non-Newtonian fluids. Phys. Fluids 6, 1491.CrossRefGoogle Scholar
Gomba, J.M., Diez, J., Gratton, R., Gonzalez, A.G. & Kondic, L. 2007 Stability study of a constant-volume thin film flow. Phys. Rev. E 76, 046308.CrossRefGoogle ScholarPubMed
Gonzalez, A.G., Diez, J.D. & Kondic, L. 2013 Stability of a liquid ring on a substrate. J. Fluid Mech. 718, 213279.CrossRefGoogle Scholar
Goodwin, R. & Homsy, G.M. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3, 515.CrossRefGoogle Scholar
Ho, C.C. & Khew, M.C. 2000 Surface free energy analysis of natural and modified natural rubber latex films by contact angle method. Langmuir 16, 14071414.CrossRefGoogle Scholar
Howell, P.D. 2003 Surface tension driven flow on a moving curved surface. J. Engng Maths 45, 283308.CrossRefGoogle Scholar
Huppert, H. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427429.CrossRefGoogle Scholar
Kondic, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45, 95115.CrossRefGoogle Scholar
Lin, T.-S. & Kondic, L. 2010 Thin films flowing down inverted substrates: two dimensional flow. Phys. Fluids 22, 052105.CrossRefGoogle Scholar
Lv, C., Eigenbrod, M. & Hardt, S. 2018 Stability and collapse of holes in liquid layers. J. Fluid Mech. 855, 11301155.CrossRefGoogle Scholar
Marchand, A., Das, S., Snoeijer, J.H. & Andreotti, B. 2012 Contact angles on a soft solid: from Young's Law to Neumann's Law. Phys. Rev. Lett. 109, 236101.CrossRefGoogle ScholarPubMed
Mayo, L.C., McCue, S.W. & Moroney, T.J. 2013 Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder. Phys. Rev. E 87, 053018.CrossRefGoogle ScholarPubMed
Melo, F., Joanny, J.F. & Fauve, S. 1989 Fingering instability of spinning drops. Phys. Rev. Lett. 63, 1958.CrossRefGoogle ScholarPubMed
Miranda, J.A., Parisio, F., Moraes, F. & Widom, M. 2000 Gravity-driven instability in a spherical Hele-Shaw cell. Phys. Rev. E 63, 016311.CrossRefGoogle Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931.CrossRefGoogle Scholar
Pismen, L.M. & Eggers, J. 2008 Solvability condition for the moving contact line. Phys. Rev. E 78, 056304.CrossRefGoogle ScholarPubMed
Roy, R.V., Roberts, A.J. & Simpson, M.E. 1997 A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235261.CrossRefGoogle Scholar
Sibley, D., Nold, A. & Kalliadasis, S. 2015 The asymptotics of the moving contact line: cracking an old nut. J. Fluid Mech. 764, 445462.CrossRefGoogle Scholar
Smolka, L. & SeGall, M. 2011 Fingering instability down the outside of a vertical cylinder. Phys. Fluids 23, 092103.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.CrossRefGoogle Scholar
Takagi, D. & Huppert, H.E. 2010 Flow and instability of thin films on a cylinder and sphere. J. Fluid. Mech. 647, 221238.CrossRefGoogle Scholar
Troian, S.M., Herbolzheimer, E., Safran, S.A. & Joanny, J.F. 1989 Fingering instabilities of driven spreading films. Europhys. Lett. 10, 25.CrossRefGoogle Scholar
Xue, N. & Stone, H.A. 2021 Draining and spreading along geometries that cause converging flows: Viscous gravity currents on a downward-pointing cone and a bowl-shaped hemisphere. Phys. Rev. Fluids. 6, 043801.CrossRefGoogle Scholar
Zhang, Y., Vandaele, A., Seveno, D. & De Coninck, J. 2018 Wetting dynamics of polydimethylsiloxane mixtures on a poly(ethylene terephthalate) fiber. J. Colloid Interface Sci. 525, 243250.CrossRefGoogle ScholarPubMed
Zheng, Z., Fontelos, M.A., Shin, S., Dallaston, M.C., Tseluiko, D., Kalliadasis, S. & Stone, H.A. 2018 Healing capillary films. J. Fluid Mech. 838, 404434.CrossRefGoogle Scholar

Lin et al. supplementary movie 1

See pdf file for movie caption

Download Lin et al. supplementary movie 1(Video)
Video 6.2 MB

Lin et al. supplementary movie 2

See pdf file for movie caption

Download Lin et al. supplementary movie 2(Video)
Video 6.1 MB

Lin et al. supplementary movie 3

See pdf file for movie caption

Download Lin et al. supplementary movie 3(Video)
Video 9.7 MB

Lin et al. supplementary movie 4

See pdf file for movie caption

Download Lin et al. supplementary movie 4(Video)
Video 9.1 MB
Supplementary material: PDF

Lin et al. supplementary material

Captions for movies 1-4

Download Lin et al. supplementary material(PDF)
PDF 37.1 KB
Supplementary material: File

Lin et al. supplementary material

Supplementary table and drawings

Download Lin et al. supplementary material(File)
File 302.6 KB