Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T03:21:01.912Z Has data issue: false hasContentIssue false

A thermodynamic efficiency for Stokesian swimming

Published online by Cambridge University Press:  08 February 2012

Stephen Childress*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

Since free Stokesian swimming does no work external to fluid and body, the classical thermodynamic efficiency of this activity is zero. This paper introduces a potential thermodynamic efficiency by partially tethering the body so that work is done externally and instantaneously. We compare the resulting efficiency with other definitions utilized in Stokes flow, extend the instantaneous definition to encompass a full swimming stroke, and compute it for propulsion of a spherical body by a helical flagellum.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bayly, P. V., Lewis, B. L., Ranzi, E. C., Okamoto, R. J., Pless, R. B. & Dutcher, S. K. 2011 Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii . Biophys. J. 100, 27162725.CrossRefGoogle ScholarPubMed
2. Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. 2006 Swimming efficiency of bacterium Escherichia coli . Proc. Natl Acad. Sci. USA 103, 1371213717.CrossRefGoogle ScholarPubMed
3. Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
4. Davis, A. M. J. 1996 The use of Stokeslets to describe arbitrary translation of a disk near a plane wall. J. Engng Maths 30, 239252.CrossRefGoogle Scholar
5. Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.Google Scholar
6. Hasimoto, H. 2007 Derivation of a sphere theorem for the Stokes flow following Imai’s procedure. Fluid Dyn. Res. 39, 521525.CrossRefGoogle Scholar
7. Leshansky, A. M., Kenneth, O., Gat, O. & Avron, J. E. 2007 A frictionless microswimmer. New J. Phys. 9, 145162.CrossRefGoogle Scholar
8. Lighthill, M. J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9, 305317.CrossRefGoogle Scholar
9. Lighthill, M. J. 1975 Mathematical Biofluiddydnamics, SIAM Regional Conference Series in Applied Mathematics , p. 59. SIAM.CrossRefGoogle Scholar
10. Lin, Z., Thiffeault, J.-L. & Childress, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167177.CrossRefGoogle Scholar
11. Michelin, S. & Lauga, E. 2010 Efficiency and symmetry-breaking in a model of ciliary locomotion. Phys. Fluids 22, 111901.CrossRefGoogle Scholar
12. Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids 23, 101901.CrossRefGoogle Scholar
13. Purcell, E. M. 1997 The efficiency of propulsion by a rotating flagellum. J. Natl Acad. Sci. USA 94, 1130711311.CrossRefGoogle ScholarPubMed
14. Raz, O. & Leshansky, A. M. 2008 How efficient is towing a cargo by a micro-swimmer? Phys. Rev. E 77, 055305.CrossRefGoogle Scholar
15. Schultz, W. W. & Webb, P. W. 2002 Power requirements of swimming: Do new methods resolve old questions? Integr. Compar. Biol. 42, 10181025.CrossRefGoogle ScholarPubMed
16. Spagnolie, S. E. & Lauga, E. 2010 The optimal elastic flagellum. Phys. Fluids 33, 031901.CrossRefGoogle Scholar
17. Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of micro-organisms by surface distortions. Phys. Rev. Lett. 77 (3), 4102.CrossRefGoogle Scholar
18. Thiffeault, J.-L. & Childress, S. 2010 Stirring by swimming bodies. Phys. Lett. A 374, 34873490.CrossRefGoogle Scholar