Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T04:34:56.221Z Has data issue: false hasContentIssue false

Thermal equilibration behind an ionizing shock

Published online by Cambridge University Press:  28 March 2006

H. Wong
Affiliation:
Department of Aeronautics and Astronautics, Stanford University Present address: Lockheed Palo Alto Research Laboratory.
D. Bershader
Affiliation:
Department of Aeronautics and Astronautics, Stanford University

Abstract

The physical mechanisms underlying the relaxation process leading to thermal equilibrium behind ionizing shock waves in argon have been studied through use of optical techniques. The non-equilibrium condition in the relaxation region was investigated experimentally by measuring the shift in the fringes due to a change in the refractive index of the medium with a Mach–Zehnder interferometer. Both electron- and mass-density profiles from the shock front to the equilibrium region were determined. The experimental work has been supplemented by a theoretical analysis of the ionization mechanism to explain the measured profiles and relaxation times.

Type
Research Article
Copyright
© 1966 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpher, R. A. & White, D. 1959a Phys. Fluids, 2, 153.
Alpher, R. A. & White, D. 1959b Phys. Fluids, 2, 162.
Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. 1962 Proc. Roy. Soc., A 267, 297.
Blackman, V. 1956 J. Fluid Mech. 1, 6.
Bond, J. W. 1957 Phys. Rev. 105, 168.
Boulegue, G., Chanson, P., Combe, R., Felix, M. & Strasman, P. 1958 Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy, Geneva, 31, 242.
Brown, E. A. & Mullaney, J. 1964 Am. Phys. Soc., Div. Fluid Dyn. Meeting, California.
Byron, S. R. 1959 J. Chem. Phys. 30, 138.
Byron, S. R., Stabler, R. C. & Bortz, P. I. 1962 Phys. Rev. Letters, 8, 376.
De Voto, R. S. 1964 Stanford Univ. Dept. of Aero. and Astro. Rep. SUDAER no. 207.
Edelman, G. M. & Bright, M. H. 1948 MIT Gas Turbine Lab. rep. no. 6.
Hagstrum, D. H. 1953 Nat. Bureau Standard Circ. no. 522,193.
Harwell, K. E. & Jahn, R. G. 1964 Phys. Fluids, 7, 214.
Johnston, N. S. & Kornegay, W. 1963 J. Chem. Phys. 38, 224.
Maier-Leibnitz, V. H. 1935 Z. Phys. 95, 49.
Marlow, W. C. & Bershader, D. 1964 Phys. Rev. 133, A 629.
Matthews, D. L. 1959 Phys. Fluid, 2, 170.
Medford, R. D., Powell, A. L. T., Hunt, A. G. & Wright, J. K. 1961 Proc. 5th Int. Conf., Ioniz. Phenom. in Gases, Munich.
Morgan, E. J. 1964 Am. Phys. Soc., Div. Fluid Dyn. Meeting, California.
Petschek, H. & Byron, S. R. 1957 Ann. Phys. 1, 27.
Ramsden, S. A. & McLean, E. A. 1962 Nature, Lond., 192, 761.
Shukhtin, A. M. 1961 Optics and Spectroscopy, 10, 222.
Stubbs, H. E., Dalgarno, A., Layzer, D., Ashley, E. N., Naqui, A. & Victor, G. 1962 Study of Recombination Phenomena, vol. ii. AFSWC TDR62–11.
Weymann, H. D. 1958 Inst. Fluid Dyn. Appl. Math. Univ. of Maryland TN no. BN-144.
Wong, H. & Horn, K. 1965 Am. Phys. Soc., 5th Shock Tube Symp. U.S. Naval Ordnance Laboratory, Silver Spring, Maryland.