Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:47:19.630Z Has data issue: false hasContentIssue false

Swimming of microorganisms in quasi-two-dimensional membranes

Published online by Cambridge University Press:  29 January 2021

Carlos Alas
Affiliation:
Department of Physics, California Polytechnic State University, San Luis Obispo, CA93407, USA
Thomas R. Powers
Affiliation:
Center for Fluid Mechanics, School of Engineering and Department of Physics, Brown University, Providence, RI02912, USA
Tatiana Kuriabova*
Affiliation:
Department of Physics, California Polytechnic State University, San Luis Obispo, CA93407, USA
*
Email address for correspondence: [email protected]

Abstract

Biological swimmers frequently navigate in geometrically restricted media. We study the prescribed-stroke problem of swimmers confined to a planar viscous membrane embedded in a bulk fluid of different viscosity. In their motion, microscopic swimmers disturb the fluid in both the membrane and the bulk. The flows that emerge have a combination of two-dimensional (2-D) and three-dimensional (3-D) hydrodynamic features, and such flows are referred to as quasi-two-dimensional. The cross-over from 2-D to 3-D hydrodynamics in a quasi-2-D fluid is controlled by the Saffman length, a length scale given by the ratio of the 2-D membrane viscosity to the 3-D viscosity of the embedding bulk fluid. We have developed a computational and theoretical approach based on the boundary element method and the Lorentz reciprocal theorem to study the swimming of microorganisms for a range of values of the Saffman length. We found that a flagellum propagating transverse sinusoidal waves in a quasi-2-D membrane can develop a swimming speed exceeding that in pure 2-D or 3-D fluids, while the propulsion of a 2-D squirmer is slowed down by the presence of the bulk fluid.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions. Dover Publications.Google Scholar
Aranson, I.S., Sokolov, A., Kessler, J.O. & Goldstein, R.E. 2007 Model for dynamical coherence in thin films of self-propelled microorganisms. Phys. Rev. E 75, 040901.CrossRefGoogle ScholarPubMed
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.CrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.CrossRefGoogle Scholar
Camley, B.A. & Brown, L.H. 2013 Diffusion of complex objects embedded in free and supported lipid bilayer membranes: role of shape anisotropy and leaflet structure. Soft Matt. 9, 47674779.CrossRefGoogle Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Crowdy, D.G. & Or, Y. 2010 Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall. Phys. Rev. E 81, 036313.CrossRefGoogle Scholar
Di Leonardo, R., Dell'Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106, 038101.CrossRefGoogle ScholarPubMed
Drescher, K., Leptos, K.C., Tuval, I., Ishikawa, T., Pedley, T.J. & Goldstein, R.E. 2009 Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.CrossRefGoogle ScholarPubMed
Dresdner, R.D., Katz, D.F. & Berger, S.A. 1980 The propulsion by large amplitude waves of uniflagellar micro-organisms of finite length. J. Fluid Mech. 97, 591621.CrossRefGoogle Scholar
Gray, J. & Hancock, G.J. 1955 The propulsion of sea-urchin spermatozoa. J. Expl Biol. 32 (4), 802814.Google Scholar
Guasto, J.S., Johnson, K.A. & Gollub, J.P. 2010 Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102.CrossRefGoogle ScholarPubMed
Happel, J.R. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Martinus Nijhoff.Google Scholar
Higdon, J.J.L. 1979 A hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90 (4), 685711.CrossRefGoogle Scholar
Huang, M.-J., Chen, H.-Y. & Mikhailov, A.S. 2012 Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions. Eur. Phys. J. E 35 (11), 119.CrossRefGoogle ScholarPubMed
Hughes, B.D., Pailthorpe, B.A. & White, L.R. 1981 The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349372.CrossRefGoogle Scholar
Ishimoto, K., Cosson, J. & Gaffney, E.A. 2016 A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J. Theor. Biol. 389, 187197.CrossRefGoogle ScholarPubMed
Jana, S., Eddins, A., Spoon, C. & Jung, S. 2015 Somersault of Paramecium in extremely confined environments. Sci. Rep. 5, 13148.CrossRefGoogle ScholarPubMed
Kim, S. & Karrila, J.S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Koehler, S., Spoor, T. & Tilley, B.S. 2012 Pitching, bobbing, and performance metrics for undulating finite-length swimming filaments. Phys. Fluids 24 (9), 091901.CrossRefGoogle Scholar
Kuriabova, T., Powers, T.R., Qi, Z., Goldfain, A., Park, C.S., Glaser, M.A., Maclennan, J.E. & Clark, N.A. 2016 Hydrodynamic interactions in freely suspended liquid crystal films. Phys. Rev. E 94, 052701.CrossRefGoogle ScholarPubMed
Lambert, R.A., Picano, F., Breugem, W.-P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.CrossRefGoogle Scholar
Lauga, E., DiLuzio, W.R., Whitesides, G.M. & Stone, H.A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Leoni, M. & Liverpool, T.B. 2010 Swimmers in thin films: from swarming to hydrodynamic instabilities. Phys. Rev. Lett. 105, 238102.CrossRefGoogle ScholarPubMed
Levine, A.J., Liverpool, T.B. & MacKintosh, F.C. 2004 Mobility of extended bodies in viscous films and membranes. Phys. Rev. E 69, 021503.CrossRefGoogle ScholarPubMed
Levine, A.J. & MacKintosh, F.C. 2002 Dynamics of viscoelastic membranes. Phys. Rev. E 66, 061606.CrossRefGoogle ScholarPubMed
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R. & Brun, Y.V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932.CrossRefGoogle Scholar
Li, G. & Tang, J.X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 071902.CrossRefGoogle Scholar
Masoud, H. & Stone, H.A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.CrossRefGoogle Scholar
Mathijssen, A.J.T.M., Doostmohammadi, A., Yeomans, J.M. & Shendruk, T.N. 2016 a Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films. J. R. Soc. Interface 13 (115), 20150936.CrossRefGoogle ScholarPubMed
Mathijssen, A.J.T.M., Doostmohammadi, A., Yeomans, J.M. & Shendruk, T.N. 2016 b Hydrodynamics of micro-swimmers in films. J. Fluid Mech. 806, 3570.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2017 Geometric tuning of self-propulsion for Janus catalytic particles. Sci. Rep. 7, 42264.CrossRefGoogle ScholarPubMed
Molaei, M., Barry, M., Stocker, R. & Sheng, J. 2014 Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys. Rev. Lett. 113, 068103.CrossRefGoogle ScholarPubMed
Or, Y. & Murray, R.M. 2009 Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E 79, 045302.CrossRefGoogle Scholar
Or, Y., Zhang, S. & Murray, R.M. 2011 Dynamics and stability of low-Reynolds-number swimming near a wall. SIAM J. Appl. Dyn. Syst. 10 (3), 10131029.CrossRefGoogle Scholar
Ota, Y., Hosaka, Y., Yasuda, K. & Komura, S. 2018 Three-disk microswimmer in a supported fluid membrane. Phys. Rev. E 97, 052612.CrossRefGoogle Scholar
Papavassiliou, D. & Alexander, G.P. 2015 The many-body reciprocal theorem and swimmer hydrodynamics. Europhys. Lett. 110 (4), 44001.CrossRefGoogle Scholar
Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y., Mallouk, T.E., Lammert, P.E. & Crespi, V.H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 1342413431.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1987 The orientation of spheroidal microorganisms swimming in a flow field. Proc. R. Soc. Lond. B 231 (1262), 4770.Google Scholar
Peng, Z., Pak, O.S. & Elfring, G.J. 2016 Characteristics of undulatory locomotion in granular media. Phys. Fluids 28 (3), 031901.CrossRefGoogle Scholar
Petrov, E. & Schwille, P. 2008 Translational diffusion in lipid membranes beyond the Saffman–Delbrück approximation. Biophys. J. 94, L41L43.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1987 Creeping flow in two-dimensional channels. J. Fluid Mech. 180, 495514.CrossRefGoogle Scholar
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Qi, Z., Ferguson, K., Sechrest, Y., Munsat, T., Park, C.S., Glaser, M.A., Maclennan, J.E., Clark, N.A., Kuriabova, T. & Powers, T.R. 2017 Active microrheology of smectic membranes. Phys. Rev. E 95, 022702.CrossRefGoogle ScholarPubMed
Qi, Z., Nguyen, Z.H., Park, C.S., Glaser, M.A., Maclennan, J.E., Clark, N.A., Kuriabova, T. & Powers, T.R. 2014 Mutual diffusion of inclusions in freely suspended smectic liquid crystal films. Phys. Rev. Lett. 113, 128304.CrossRefGoogle ScholarPubMed
Rower, D.A., Padidar, M. & Atzberger, P.J. 2019 Surface fluctuating hydrodynamics methods for the drift-diffusion dynamics of particles and microstructures within curved fluid interfaces. arXiv:1906.01146.Google Scholar
Saffman, P.G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73, 593602.CrossRefGoogle Scholar
Saffman, P.G. & Delbrück, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 31113113.CrossRefGoogle ScholarPubMed
Sauzade, M., Elfring, G.J. & Lauga, E. 2011 Taylor's swimming sheet: analysis and improvement of the perturbation series. Physica D 240 (20), 15671573.CrossRefGoogle Scholar
Sokolov, A., Aranson, I.S., Kessler, J.O. & Goldstein, R.E. 2007 Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102.CrossRefGoogle ScholarPubMed
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Stone, H.A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.CrossRefGoogle Scholar
Stone, H.A. & Samuel, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 41024104.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1951 Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209 (1099), 447461.Google Scholar
Wang, S. & Ardekani, A.M. 2013 Swimming of a model ciliate near an air-liquid interface. Phys. Rev. E 87, 063010.CrossRefGoogle Scholar