Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:25:05.640Z Has data issue: false hasContentIssue false

Sustaining processes from recurrent flows in body-forced turbulence

Published online by Cambridge University Press:  24 March 2017

Dan Lucas*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
Rich Kerswell
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
*
Email address for correspondence: [email protected]

Abstract

By extracting unstable invariant solutions directly from body-forced three-dimensional turbulence, we study the dynamical processes at play when the forcing is large scale and unidirectional in either the momentum or the vorticity equations. In the former case, the dynamical processes familiar from recent work on linearly stable shear flows – variously called the self-sustaining process (Waleffe, Phys. Fluids, vol. 9 (4), 1997, pp. 883–900) or vortex–wave interaction (Hall & Smith, J. Fluid Mech., vol. 227, 1991, pp. 641–666; Hall & Sherwin, J. Fluid Mech., vol. 661, 2010, pp. 178–205) – are important even when the base flow is linearly unstable. In the latter case, where the forcing drives Taylor–Green vortices, a number of mechanisms are observed from the various types of periodic orbits isolated. In particular, two different transient growth mechanisms are discussed to explain the more complex states found.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.Google Scholar
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.Google Scholar
Cvitanović, P. 1992 Periodic orbit theory in classical and quantum mechanics. Chaos: An Interdiscip. J. Nonlinear Sci. 2 (1), 1.Google Scholar
Cvitanović, P. & Gibson, J. F. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. 142, 4007.Google Scholar
Farazmand, M. 2016 An adjoint-based approach for finding invariant solutions of Navier–Stokes equations. J. Fluid Mech. 795, 278312.Google Scholar
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31, 20932102.Google Scholar
Gau, T. & Hattori, Y. 2014 Modal and non-modal stability of two-dimensional Taylor–Green vortices. Fluid Dyn. Res 46 (3), 031410.Google Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.Google Scholar
Goto, S. 2012 Coherent structures and energy cascade in homogeneous turbulence. Progr. Theor. Phys. Suppl. 195 (195), 139156.CrossRefGoogle Scholar
Goto, S., Saito, Y. & Kawahara, G. 2017 Hierarchy of anti-parallel vortex tubes in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids (submitted).CrossRefGoogle Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.Google Scholar
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287 (-1), 317348.Google Scholar
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Appl. Maths 1, 303322.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.Google Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos: An Interdiscip. J. Nonlinear Sci. 22 (4), 047505.Google Scholar
Lan, Y. H. & Cvitanović, P. 2004 Variational method for finding periodic orbits in a general flow. Phys. Rev. E 69 (1), 016217.Google Scholar
Lucas, D. & Kerswell, R. R. 2014 Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains. J. Fluid Mech. 750, 518554.Google Scholar
Lucas, D. & Kerswell, R. R. 2015 Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow. Phys. Fluids 27 (4), 045106.Google Scholar
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of the system of equations for the plane movement of an incompressible viscous liquid. Z. Angew. Math. Mech. J. Appl. Math. Mech. 25, 17001705.Google Scholar
Rincon, F., Ogilvie, G. I. & Cossu, C. 2007 On the self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transition to turbulence in accretion disks. Astron. Astrophys. 463, 817832.Google Scholar
Teramura, T. & Toh, S. 2014 Damping filter method for obtaining spatially localized solutions. Phys. Rev. E 89 (5), 052910.Google ScholarPubMed
van Veen, L. & Goto, S. 2016 Subcritical transition to turbulence in three-dimensional Kolmogorov flow. Fluid Dyn. Res. 48 (6), 061425.Google Scholar
van Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38 (1), 1946.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.Google Scholar
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.Google Scholar
Willis, A. P., Short, K. Y. & Cvitanovic, P. 2016 Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93 (2), 022204.Google Scholar
Yasuda, T., Goto, S. & Kawahara, G. 2014 Quasi-cyclic evolution of turbulence driven by a steady force in a periodic cube. Fluid Dyn. Res. 46 (6), 061413.CrossRefGoogle Scholar
Supplementary material: File

Lucas and Kerswell supplementary material

Lucas and Kerswell supplementary material 1

Download Lucas and Kerswell supplementary material(File)
File 1.6 MB