Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T06:19:54.910Z Has data issue: false hasContentIssue false

Surface oscillations of electromagnetically levitated viscous metal droplets

Published online by Cambridge University Press:  26 April 2006

A. Bratz
Affiliation:
Institut für Raumsimulation, DLR, D 51440 Köln Porz, Germany
I. Egry
Affiliation:
Institut für Raumsimulation, DLR, D 51440 Köln Porz, Germany

Abstract

We investigate the oscillation spectrum of electromagnetically levitated metal droplets. In the case of electromagnetic levitation, gravity is compensated by a Lorentz force, which is generated by an external current. The oscillation spectrum contains information about the thermophysical properties of the liquid metal, namely surface tension and viscosity. For a correct interpretation of these spectra the influence of the external forces on the frequencies and the damping of the surface waves must be well understood. The external forces deform the droplet, so that the static equilibrium shape is aspherical. For a perfect conductor the effect of the Lorentz force and gravity on the oscillation spectrum is calculated for an arbitrary magnetic field and arbitrary values of the viscosity. The high Reynolds number limit is evaluated. Explicit results are obtained for a linear magnetic field, which describes the experimental situation well.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. 1990 Elementary Fluid Dynamics. Clarendon.
Busse, F. H. 1984 Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 18.Google Scholar
Butkov, E. 1968 Mathematical Physics. Addison-Wesley.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, 2nd edn. Dover.
Collins D. J., Plesset M. S., & Saffren M. M. (Eds.) 1994 Proc. Intl Colloquium on Drops and Bubbles. California Institute of Technology and Jet Propulsion Laboratory.
Cummings, D. L. & Blackburn, D. A. 1991 Oscillations of magnetically levitated aspherical droplets. J. Fluid Mech. 224, 395416.Google Scholar
El-Kaddah, N. & Szekely, J. 1983 The electromagnetic force field, fluid flow field, and temperature profiles in levitated metal droplets. Metall. Trans. 14B, 401410.Google Scholar
Fetter, A. L. & Walecka, J. D. 1980 Theoretical Mechanics of Particles and Continua. McGraw-Hill.
Iida, T. & Guthrie, R. I. L. 1988 The Physical Properties of Liquid Metals. Clarendon.
Jackson, J. D. 1962 Classical Electrodynamics. John Wiley & Sons.
Lohöfer, G. 1989 Theory of an electromagnetically levitated metal sphere I: absorbed power. SIAM J. Appl. Maths 49, 567581.Google Scholar
Lohöfer, G. 1993 Force and torque of an electromagnetically levitated metal sphere, Q. Appl. Maths 11, 495518.Google Scholar
Mestel, A. J. 1982 Magnetic levitation of liquid metals. J. Fluid Mech. 117, 2743.Google Scholar
Okress, E. C., Wroughton, D. M., Comenetz, G., Brace, P. H. & Kelly, J. C. R. 1952 Electromagnetic levitation of solid and molten metals. J. Appl. Phys. 23, 545552.Google Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond A 29, 7197.Google Scholar
Reid, W. H. 1960 The oscillations of a viscous liquid drop. Q. Appl. Maths 18, 8689.Google Scholar
Sauerland, S. 1993 Messung der Oberflächenspannung an levitierten flüssigen Metalltropfen. Dissertation, RWTH Aachen.
Sauerland, S., Lohöfer, G. & Egry, I. 1993 Surface tension measurements on levitated aspherical liquid nickel drops. Thermochimica Acta 218, 445453.Google Scholar
Schwartz, E., Sauerland, S., Szekely, J. & Egry, I. 1993 On the shape of liquid metal droplets in electromagnetic levitation experiments. In Containerless Processing: Techniques and Applications (ed. W. Hofmeister), pp. 5764. The Minerals, Metals & Materials Society.
Shercliff, J. A. 1965 Textbook of Magnetohydrodynamics. Pergamon.
Sneyd, A. D. & Moffat, H. K. 1982 Fluid dynamical aspects of the levitation melting process. J. Fluid Mech. 117, 4570.Google Scholar
Suryanarayana, P. V. R. & Bayazitoglu, Y. 1991a Effect of static deformation and external forces on the oscillations of levitated droplets. Phys. Fluids A 3, 967977.Google Scholar
Suryanarayana, P. V. R. & Bayazitoglu, Y. 1991b Surface tension and viscosity from damped free oscillations of viscous droplets. Intl J. Thermophys. 12, 137151.Google Scholar
Warham, A. G. P. 1988 Vibration of a levitated drop. NPL Rep. DITC 110/88.