Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T06:44:39.084Z Has data issue: false hasContentIssue false

Supersonic viscous flow over cones at large angles of attack

Published online by Cambridge University Press:  29 March 2006

Clive A. J. Fletcher
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley Permanent address: Weapons Research Establishment, Salisbury, South Australia.
Maurice Holt
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley

Abstract

Numerical solutions for the flow field about cones with nose angles of up to 30° at angles of attack up to 50° for a range of Reynolds numbers and wall temperature ratios are presented. The solutions obtained permit interaction between the inviscid region and the boundary layer on the body through the displacement-thickness effect. The solutions are valid throughout the flow field except in the region adjacent to the leeward line of symmetry. Comparisons are made with experimental results and other numerical solutions. Detailed flow structure and the variation of surface conditions with cone angle, incidence, Reynolds number and wall temperature are indicated. The numerical methods used for the inviscid flow equations are Telenin's method and the method of characteristics, while a modified form of the method of integral relations is applied to the boundary-layer equations.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avduevski, V. S. & Medvedev, K. I. 1966 Izv. Akad. Nauk SSSR Mekh. Zh. i Gaza 3, 117810.
Babenko, K. I., Vozkresenskii, G. P., Lyubimov, A. N. & Rusanov, V. V. 1964 Akad. Nauk SSSR Matem. im V. A. Steklova, Moscow. (See also N.A.S.A. TT F-380, 1966.)Google Scholar
Bachmanova, N. S., Lapygin, V. I. & Lipnitskii, YU. M. 1975 Fluid Dyn. 8, 915810.
Bashkin, V. A. 1968 Zh. Vychisl. Mat. Mat. Fiz. 8, 1280810.
Bazzhin, A. P. 1971 Proc. 2nd Int. Conf. on Numerical Methods in Fluid Dyn. Lecture Notes in Physics, vol. 8 (ed. M. Holt), pp. 223229. Springer.
Belotserkovskii, O. M. & Chushkin, P. I. 1965 In Basic Developments in Fluid Dynamics (ed. M. Holt), vol. 1, pp. 89128. Academic.
Boericke, R. R. 1971 A.I.A.A. J. 9, 462810.
Dwyer, H. A. 1971 A.I.A.A. J. 9, 277810.
Fletcher, C. A. J. 1974a University of California at Berkeley Rep. FM-74-8.
Fletcher, C. A. J. 1974b Proc. 4th Int. Conf. on Numerical Methods in Fluid Dyn. Lecture Notes in Physics, vol. 35 (ed. R. D. Richtmyer), pp. 161166. Springer.
Fletcher, C. A. J. 1975 A.I.A.A. J. 13, 1073810.
Fletcher, C. A. J. & Holt, M. 1975 J. Comp. Phys. 18, 154810.
Gear, C. W. 1971 Comm. A.C.M. 14, 176810.
Gilinskii, S. M., Telenin, G. F. & Tinyakov, G. P. 1964 Izv. Akad. Nauk SSR, Mechan. i mashinostr. 4, 9810. (see also N.A.S.A. TT F-297, 1965.)
Holt, M. & Ndefo, D. E. 1970 J. Comp. Phys. 5, 463810.
Jones, D. J. 1968 Nat. Res. Counc. Can. Aero. Rep. LR-507.
Kutler, P. & Lomax, H. 1970 Proc. 2nd Int. Conf. on Numerical Methods in Fluid Dyn. Lecture Notes in Physics, vol. 8 (ed. M. Holt), pp. 2429. Springer.
Lin, T. C. & Rubin, S. G. 1973 J. Fluid Mech. 59, 593810.
Lubard, S. & Helliwell, W. S. 1974 A.I.A.A. J. 12, 965810.
Marcillat, J. & Roux, B. 1972 A.I.A.A. J. 10, 1625810.
Moore, F. K. 1951 N.A.C.A. Tech. Note, no. 2279.
Moore, F. K. 1952 N.A.C.A. Tech. Note, no. 2722.
Powell, M. J. D. 1964 Comp. J. 7, 303810.
Rainbird, W. J. 1967 Nat. Res. Counc. Can. DME/NAE Quart. Bull. no. 1967(3).
Rainbird, W. J. 1968 AGARD Conf. Proc. no. 30, paper 30.
Tracy, R. R. 1963 California Inst. Tech. Memo. no. 69.
Yahalom, R. 1971 University of California at Berkeley, Rep. AS-71-2.