Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T16:05:52.118Z Has data issue: false hasContentIssue false

Supersonic turbulent boundary layer drag control using spanwise wall oscillation

Published online by Cambridge University Press:  09 October 2019

Jie Yao
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
Fazle Hussain*
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
*
Email address for correspondence: [email protected]

Abstract

Spanwise wall oscillation has been extensively studied to explore possible drag control methods, mechanisms and efficacy – particularly for incompressible flows. We performed direct numerical simulation for fully developed turbulent channel flow to establish how effective spanwise wall oscillation is when the flow is compressible and also to document its drag reduction (${\mathcal{D}}{\mathcal{R}}$) trend with Mach number. Drag reduction ${\mathcal{D}}{\mathcal{R}}$ is first investigated for three different bulk Mach numbers $M_{b}=0.3$, $0.8$ and $1.5$ at a fixed bulk Reynolds number $Re_{b}=3000$. At a given velocity amplitude $A^{+}$ ($=12$), ${\mathcal{D}}{\mathcal{R}}$ at $M_{b}=0.3$ agrees with the strictly incompressible case; at $M_{b}=0.8$, ${\mathcal{D}}{\mathcal{R}}$ exhibits a similar trend to that at $M_{b}=0.3$: ${\mathcal{D}}{\mathcal{R}}$ increases with the oscillation period $T^{+}$ to a maximum and then decreases gradually. However, at $M_{b}=1.5$, ${\mathcal{D}}{\mathcal{R}}$ monotonically increases with $T^{+}$. In addition, the maximum ${\mathcal{D}}{\mathcal{R}}$ is found to increase with $M_{b}$. For $M_{b}=1.5$, similar to the incompressible case, ${\mathcal{D}}{\mathcal{R}}$ increases with $A^{+}$, but the rate of increase decreases at larger $A^{+}$. Unlike the flow behaviour when incompressible, the flow surprisingly relaminarizes when it is supersonic (at $A^{+}=18$ and $T^{+}=300$) – this enigmatic behaviour requires further detailed studies for different domain sizes, $Re_{b}$ and $M_{b}$. The Reynolds number effect on ${\mathcal{D}}{\mathcal{R}}$ is also investigated. Although ${\mathcal{D}}{\mathcal{R}}$ generally decreases with $Re_{b}$, it is less affected at small $T^{+}$, but drops rapidly at large $T^{+}$. We introduce a simple scaling for the oscillation period as $T^{\ast }=T_{C}^{+}l_{I}^{+}/l_{C}^{+}$, with $l_{I}^{+}$ and $l_{C}^{+}$ denoting the mean streak spacing for incompressible and compressible cases, respectively. At the same semi-local Reynolds number $Re_{\unicode[STIX]{x1D70F}c}^{\ast }\equiv Re_{\unicode[STIX]{x1D70F}}\sqrt{\overline{\unicode[STIX]{x1D70C}}_{c}/\overline{\unicode[STIX]{x1D70C}}_{w}}/(\overline{\unicode[STIX]{x1D707}}_{c}/\overline{\unicode[STIX]{x1D707}}_{w})$ (subscripts $c$ and $w$ denote quantities at the channel centre and wall, respectively), ${\mathcal{D}}{\mathcal{R}}$ as a function of $T^{\ast }$ exhibits good agreement between the supersonic and strictly incompressible cases, with the optimal oscillation period becoming $M_{b}$-invariant as $T_{opt}^{\ast }\approx 100$.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L., Touber, E. & Leschziner, M. A. 2014 Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Re 𝜏 = 1000. J. Fluid Mech. 743, 606635.10.1017/jfm.2014.40Google Scholar
Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.10.1017/S0022112002007851Google Scholar
Barkley, D. & Tuckerman, L. S. 2005 Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94 (1), 014502.10.1103/PhysRevLett.94.014502Google Scholar
Baron, A. & Quadrio, M. 1995 Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55 (4), 311326.10.1007/BF00856638Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bechert, D. W., Bruse, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.10.1017/S0022112096004673Google Scholar
Berger, T. W., Kim, J., Lee, C. & Lim, J. 2000 Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids 12 (3), 631649.10.1063/1.870270Google Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to Re 𝜏 = 4000. J. Fluid Mech. 742, 171191.10.1017/jfm.2013.674Google Scholar
Chen, J., Hussain, F., Pei, J. & She, Z.-S. 2014 Velocity–vorticity correlation structure in turbulent channel flow. J. Fluid Mech. 742, 291307.10.1017/jfm.2014.3Google Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.10.1017/S0022112094000431Google Scholar
Choi, J.-I., Xu, C.-X. & Sung, H. J. 2002 Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40 (5), 842850.10.2514/2.1750Google Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.10.1017/S0022112095004587Google Scholar
Deng, B.-Q., Xu, C.-X., Huang, W.-X. & Cui, G.-X. 2014 Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J. Turbul. 15 (2), 122143.10.1080/14685248.2013.877144Google Scholar
van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.Google Scholar
Duan, L., Beekman, I. & Martin, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.10.1017/S0022112010000959Google Scholar
Duan, L. & Choudhari, M. 2012 Effects of riblets on skin friction and heat transfer in high-speed turbulent boundary layers. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2012-1108.Google Scholar
Duan, L. & Choudhari, M. M. 2014 Direct numerical simulations of high-speed turbulent boundary layers over riblets. In 52nd Aerospace Sciences Meeting, AIAA Paper 2014-0934.Google Scholar
Duguet, Y., Schlatter, P. & Henningson, D. S. 2010 Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech. 650, 119129.10.1017/S0022112010000297Google Scholar
Fang, J., Lu, L.-P. & Shao, L. 2010 Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation. Acta Mech. Sin. 26 (3), 391399.Google Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.10.1017/S0022112004009371Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.10.1063/1.1516779Google Scholar
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369 (1940), 14121427.10.1098/rsta.2010.0359Google Scholar
Garcia-Villalba, M. & Del Alamo, J. C. 2011 Turbulence modification by stable stratification in channel flow. Phys. Fluids 23 (4), 045104.10.1063/1.3560359Google Scholar
Garg, R. P., Ferziger, J. H., Monismith, S. G. & Koseff, J. R. 2000 Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids 12 (10), 25692594.10.1063/1.1288608Google Scholar
Gatti, D. & Quadrio, M. 2013 Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25 (12), 125109.10.1063/1.4849537Google Scholar
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553582.10.1017/jfm.2016.485Google Scholar
Gomez, T., Flutet, V. & Sagaut, P. 2009 Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 79 (3), 035301.Google Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.10.1017/S0022112006008871Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014 The influence of harmonic wall motion on transitional boundary layers. J. Fluid Mech. 760, 6394.10.1017/jfm.2014.591Google Scholar
Hadjadj, A., Ben-Nasr, O., Shadloo, M. S. & Chaudhuri, A. 2015 Effect of wall temperature in supersonic turbulent boundary layers: a numerical study. Intl J. Heat Mass Transfer 81, 426438.10.1016/j.ijheatmasstransfer.2014.10.025Google Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599Google Scholar
Hurst, E., Yang, Q. & Chung, Y. M. 2014 The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 2855.10.1017/jfm.2014.524Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946Google Scholar
Iida, O., Kasagi, N. & Nagano, Y. 2002 Direct numerical simulation of turbulent channel flow under stable density stratification. Intl J. Heat Mass Transfer 45 (8), 16931703.10.1016/S0017-9310(01)00271-XGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.10.1146/annurev.fluid.36.050802.122103Google Scholar
Jung, W. J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 16051607.10.1063/1.858381Google Scholar
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154172.10.1017/jfm.2011.219Google Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132142.10.1016/j.ijheatfluidflow.2015.05.019Google Scholar
Kametani, Y., Kotake, A., Fukagata, K. & Tokugawa, N. 2017 Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows. Phys. Rev. Fluids 2 (12), 123904.10.1103/PhysRevFluids.2.123904Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892Google Scholar
Laadhari, F., Skandaji, L. & Morel, R. 1994 Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6 (10), 32183220.10.1063/1.868052Google Scholar
Lardeau, S. & Leschziner, M. A. 2013 The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25 (7), 075109.10.1063/1.4816290Google Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re = 5200. J. Fluid Mech. 774, 395415.10.1017/jfm.2015.268Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.10.1063/1.4862918Google Scholar
Lozano-Duran, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.10.1063/1.4862918Google Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.10.1126/science.1188765Google Scholar
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.10.1063/1.1755723Google Scholar
Mittal, R. & Moin, P. 1997 Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J. 35 (8), 14151417.10.2514/2.253Google Scholar
Moarref, R. & Jovanović, M. R. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.10.1017/jfm.2012.272Google Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.10.1016/j.ijheatfluidflow.2016.01.007Google Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.10.1017/S0022112003007705Google Scholar
Nakanishi, R., Mamori, H. & Fukagata, K. 2012 Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152159.10.1016/j.ijheatfluidflow.2012.01.007Google Scholar
Ni, W., Lu, L., Ribault, C. L. & Fang, J. 2016 Direct numerical simulation of supersonic turbulent boundary layer with spanwise wall oscillation. Energies 9 (3), 154.10.3390/en9030154Google Scholar
Oliver, T. A., Malaya, N., Ulerich, R. & Moser, R. D. 2014 Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26 (3), 035101.10.1063/1.4866813Google Scholar
Orlandi, P. & Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 4372.10.1017/S0022112097005715Google Scholar
Patel, A., Boersma, B. J. & Pecnik, R. 2016 The influence of near-wall density and viscosity gradients on turbulence in channel flows. J. Fluid Mech. 809, 793820.10.1017/jfm.2016.689Google Scholar
Patel, A., Peeters, J. W. R., Boersma, B. J. & Pecnik, R. 2015 Semi-local scaling and turbulence modulation in variable property turbulent channel flows. Phys. Fluids 27 (9), 095101.10.1063/1.4929813Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.10.1017/jfm.2011.368Google Scholar
Quadrio, M. & Ricco, P. 2003 Initial response of a turbulent channel flow to spanwise oscillation of the walls. J. Turbul. 4 (7), 123.Google Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.10.1017/S0022112004001855Google Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.10.1017/S0022112009006077Google Scholar
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.10.1017/S0022112000001889Google Scholar
Rai, M. M. & Moin, P. 1991 Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96 (1), 1553.Google Scholar
Ricco, P. & Quadrio, M. 2008 Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J. Heat Fluid Flow 29 (4), 891902.10.1016/j.ijheatfluidflow.2007.12.005Google Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.10.1146/annurev-fluid-121108-145558Google Scholar
Schoppa, W. & Hussain, F. 1998 A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10 (5), 10491051.10.1063/1.869789Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XGoogle Scholar
Sciacovelli, L., Cinnella, P. & Gloerfelt, X. 2017 Direct numerical simulations of supersonic turbulent channel flows of dense gases. J. Fluid Mech. 821, 153199.10.1017/jfm.2017.237Google Scholar
Skote, M., Mishra, M. & Wu, Y. 2015 Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with Reynolds number. Intl J. Aerosp. Engng 2015, 891037.Google Scholar
Skote, M., Mishra, M. & Wu, Y. 2019 Wall oscillation induced drag reduction zone in a turbulent boundary layer. Flow Turbul. Combust. 102, 641666.10.1007/s10494-018-9979-2Google Scholar
Spalart, P. R. & McLean, J. D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A 369 (1940), 15561569.10.1098/rsta.2010.0369Google Scholar
Touber, E. & Leschziner, M. A. 2012 Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150200.10.1017/jfm.2011.507Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.10.1063/1.4942022Google Scholar
Wang, Y.-S., Huang, W.-X. & Xu, C.-X. 2016 Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn. Res. 48 (5), 055501.Google Scholar
Xu, C.-X. & Huang, W.-X. 2005 Transient response of Reynolds stress transport to spanwise wall oscillation in a turbulent channel flow. Phys. Fluids 17 (1), 018101.10.1063/1.1827274Google Scholar
Yakeno, A., Hasegawa, Y. & Kasagi, N. 2014 Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26 (8), 085109.10.1063/1.4893903Google Scholar
Yao, J., Chen, X. & Hussain, F. 2018 Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing. J. Fluid Mech. 852, 678709.10.1017/jfm.2018.553Google Scholar
Yao, J., Chen, X. & Hussain, F. 2019 Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows. Phys. Fluids 31 (8), 085108.10.1063/1.5111651Google Scholar
Yao, J., Chen, X., Thomas, F. & Hussain, F. 2017 Large-scale control strategy for drag reduction in turbulent channel flows. Phys. Rev. Fluids 2, 062601.10.1103/PhysRevFluids.2.062601Google Scholar
Yao, J. & Hussain, F. 2018 Toward vortex identification based on local pressure-minimum criterion in compressible and variable density flows. J. Fluid Mech. 850, 517.10.1017/jfm.2018.465Google Scholar
Zhang, C., Duan, L. & Choudhari, M. M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.10.2514/1.J057296Google Scholar
Zhe, C., ChangPing, Y., Li, L. & XinLiang, L. 2016 Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers. Sci. Chin. Phys. Mech. Astron. 59 (6), 664702.Google Scholar