Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T14:06:23.316Z Has data issue: false hasContentIssue false

Streaming patterns in Faraday waves

Published online by Cambridge University Press:  21 April 2017

Nicolas Périnet
Affiliation:
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
Pablo Gutiérrez
Affiliation:
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Av. Libertador Bernardo O’Higgins 611, Rancagua, Chile
Héctor Urra
Affiliation:
Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Chile
Nicolás Mujica
Affiliation:
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
Leonardo Gordillo*
Affiliation:
Departamento de Física, Universidad de Santiago, Casilla 307-2, Santiago, Chile
*
Email address for correspondence: [email protected]

Abstract

Wave patterns in the Faraday instability have been studied for decades. Besides the rich wave dynamics observed at the interface, Faraday waves hide elusive flow patterns in the bulk – streaming patterns – which have not been studied experimentally. The streaming patterns are responsible for a net circulation in the flow, which is reminiscent of the circulation in convection cells. In this article, we analyse these streaming flows by conducting experiments in a Faraday-wave set-up using particle image velocimetry. To visualise the flows, we perform stroboscopic measurements to both generate trajectory maps and probe the streaming velocity field. We identify three types of patterns and experimentally show that identical Faraday waves can mask streaming patterns that are qualitatively very different. Next, we consider a three-dimensional model for streaming flows in quasi-inviscid fluids, whose key is the complex coupling occurring at all of the viscous boundary layers. This coupling yields modified boundary conditions in a three-dimensional Navier–Stokes formulation of the streaming flow. Numerical simulations based on this framework show reasonably good agreement, both qualitative and quantitative, with the velocity fields of our experiments. The model highlights the relevance of three-dimensional effects in the streaming patterns. Our simulations also reveal that the variety of streaming patterns is deeply linked to the boundary condition at the top interface, which may be strongly affected by the presence of contaminants.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Chen, P., Luo, Z., Güven, S., Tasoglu, S., Ganesan, A. V., Weng, A. & Demirci, U. 2014 Microscale assembly directed by liquid-based template. Adv. Mater. 26 (34), 59365941.Google Scholar
Chladni, E. F. F. 1787 Entdeckungen über die Theorie des Klangen. Wittenberg.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745762.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.Google Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.Google Scholar
Falkovich, G., Weinberg, A., Denissenko, P. & Lukaschuk, S. 2005 Surface tension: floater clustering in a standing wave. Nature 435 (7045), 10451046.Google Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. A 121, 299340.Google Scholar
van Gerner, H. J., van der Weele, K., van der Hoef, M. A. & van der Meer, D. 2011 Air-induced inverse Chladni patterns. J. Fluid Mech. 689, 203220.CrossRefGoogle Scholar
Gordillo, L.2012 Non-propagating hydrodynamic solitons in a quasi-one-dimensional free surface subject to vertical vibrations. PhD thesis, Universidad de Chile, Santiago.Google Scholar
Gordillo, L. & Mujica, N. 2014 Measurement of the velocity field in parametrically excited solitary waves. J. Fluid Mech. 754, 590604.Google Scholar
Gutiérrez, P. & Aumaître, S. 2016 Clustering of floaters on the free surface of a turbulent flow: an experimental study. Eur. J. Mech. B 60, 2432.CrossRefGoogle Scholar
Henderson, D. & Miles, J. W. 1994 Surface wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285299.Google Scholar
Higuera, M. & Knobloch, E. 2006 Nearly inviscid Faraday waves in slightly rectangular containers. Prog. Theor. Phys. Supp. 161, 5367.CrossRefGoogle Scholar
Higuera, M., Vega, J. M. & Knobloch, E. 2002 Coupled amplitude–streaming flow equations for nearly inviscid Faraday waves in small aspect ratio containers. J. Nonlinear Sci. 12 (5), 505551.Google Scholar
Lamb, H. 2006 Hydrodynamics, 6th edn. Cambridge Mathematical Library. Cambridge University Press.Google Scholar
Lide, D. R. 2004 Handbook of Chemistry and Physics, 85th edn. Chemical Rubber Company Press.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535.Google Scholar
Martin, E., Martel, C. & Vega, J. M. 2002 Drift instability of standing Faraday waves. J. Fluid Mech. 467, 5779.Google Scholar
Martin, E. & Vega, J. M. 2005 The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech. 546, 203225.CrossRefGoogle Scholar
Meinhart, C. D., Wereley, S. T. & Santiago, J. G. 2000 A PIV algorithm for estimating time-averaged velocity fields. Trans. ASME J. Fluids Engng 122 (2), 285289.Google Scholar
Miles, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297, 459.Google Scholar
Miles, J. W. 1976 Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419448.Google Scholar
Miles, J. W. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.Google Scholar
Nicolás, J. A. & Vega, J. M. 2000 A note on the effect of surface contamination in water wave damping. J. Fluid Mech. 410, 367373.Google Scholar
Nicolás, J. A. & Vega, J. M. 2003 Three-dimensional streaming flows driven by oscillatory boundary layers. Fluid Dyn. Res. 32 (4), 119139.Google Scholar
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.Google Scholar
Sanli, C., Lohse, D. & van der Meer, D. 2014 From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave. Phys. Rev. E 89 (5), 053011.Google ScholarPubMed
Schlichting, H. 1932 Berechnung ebener periodischer Grenzschichtströmungen. Phys. Z 33 (1932), 327335.Google Scholar
Schlichting, H. T. & Gersten, K. 1999 Boundary Layer Theory, 8th edn. Springer.Google Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.Google Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8.Google Scholar
Strickland, S. L., Shearer, M. & Daniels, K. E. 2015 Spatiotemporal measurement of surfactant distribution on gravity–capillary waves. J. Fluid Mech. 777, 523543.CrossRefGoogle Scholar
Van Dyke, M. 1982 An Album of Fluid Motion. Parabolic.Google Scholar
Vega, J. M., Knobloch, E. & Martel, C. 2001 Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154 (3), 313336.Google Scholar
Wallet, A. & Ruellan, F. 1950 Trajectoires Internes Dans un Clapotis Partiel, vol. 5. La Houille Blanche.Google Scholar
Wright, P. H. & Saylor, J. R. 2003 Patterning of particulate films using Faraday waves. Rev. Sci. Instrum. 74 (9), 4063.CrossRefGoogle Scholar
Wu, J., Keolian, R. & Rudnick, I. 1984 Observation of a nonpropagating hydrodynamic soliton. Phys. Rev. Lett. 52 (1), 14211424.Google Scholar