Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T11:23:31.409Z Has data issue: false hasContentIssue false

Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble

Published online by Cambridge University Press:  25 May 2021

Jing Luo
Affiliation:
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610065, PR China
Weilin Xu*
Affiliation:
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu610065, PR China
Boo Cheong Khoo
Affiliation:
Temasek Laboratories, National University of Singapore, Singapore117411, Republic of Singapore Department of Mechanical Engineering, National University of Singapore, Singapore119260, Republic of Singapore
*
Email address for correspondence: [email protected]

Abstract

This paper presents an experimental study on the mechanism of interaction between a cavitation bubble and an air bubble. The cavitation bubble was generated by means of the low-voltage discharge method, and the combination of high-speed photography and a pressure measurement system allowed for simultaneous observation and measurement of the evolution of the shock wave and the change in shock wave strength with the presence of the air bubble in the vicinity. The high-speed imaging revealed the predominant roles of the relative distance φ and relative size ε between the cavitation and air bubbles in the determination of the stratification effect that the air bubble exerted on the shock wave produced from the first collapse of the cavitation bubble. The pressure measurement indicated that, when the air bubble did not merge with the cavitation bubble, the aforementioned factors, together with the angle $\alpha $ formed by the air bubble, cavitation bubble and the measuring point, would jointly affect the attenuation of the pressure peak and energy of the shock wave. Quantitatively, the attenuation magnitude was proportional to $a{(\alpha \varphi /\varepsilon )^b}$, where the values of the coefficients a and b depended on whether the shock wave was stratified or not. When the cavitation bubble and the air bubble merged, the energy and the pressure peak of the shock wave decreased to less than 40 % of the values in the absence of the air bubble. With the new insight into bubble–bubble interaction mechanisms, the findings will facilitate a better understanding and development of cavitation utilization and prevention technology in water--air two phase systems.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, R., Liu, S., Tian, Z., Wang, W. & Zhang, F. 2017 Experimental investigation of air-water flow properties of offset aerators. J. Hydraul. Engng 144 (2), 04017059.CrossRefGoogle Scholar
Beig, S.A. 2018 A computational study of the inertial collapse of gas bubbles near a rigid surface. Doctoral dissertation, University of Michigan.Google Scholar
Beig, S.A., Aboulhasanzadeh, B. & Johnsen, E. 2018 Temperatures produced by inertially collapsing bubbles near rigid surfaces. J. Fluid Mech. 852, 105125.CrossRefGoogle Scholar
Benjamin, T.B. & Ellis, A.T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A, 221240.Google Scholar
Blake, J.R. & Gibson, D.C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.CrossRefGoogle Scholar
Blake, J.R. & Gibson, D.C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Blake, J.R., Keen, G.S., Tong, R.P. & Wilson, M. 1999 Acoustic cavitation: the fluid dynamics of non-spherical bubbles. Phil. Trans. R. Soc. Lond. A 357 (1751), 251267.CrossRefGoogle Scholar
Chahine, G.L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME J. Fluids Engng 99 (4), 709716.CrossRefGoogle Scholar
Chen, H., Kreider, W., Brayman, A.A., Bailey, M.R. & Matula, T.J. 2011 Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys. Rev. Lett. 106 (3), 034301.CrossRefGoogle ScholarPubMed
Cole, R.H. 1948 Underwater explosions. Princeton University Press.CrossRefGoogle Scholar
Cui, P., Zhang, A.M., Wang, S. & Khoo, B.C. 2018 Ice breaking by a collapsing bubble. J. Fluid Mech. 841, 287309.CrossRefGoogle Scholar
Goh, B.H.T., Ohl, S.W., Klaseboer, E. & Khoo, B.C. 2014 Jet orientation of a collapsing bubble near a solid wall with an attached air bubble. Phys. Fluids 26 (4), 042103.CrossRefGoogle Scholar
Goh, B.H.T., Oh, Y.D.A., Klaseboer, E., Ohl, S.W. & Khoo, B.C. 2013 A low-voltage spark-discharge method for generation of consistent oscillating bubbles. Rev. Sci. Instrum. 84 (1), 014705.CrossRefGoogle ScholarPubMed
Gong, S.W., Ohl, S.W., Klaseboer, E. & Khoo, B.C. 2010 Scaling law for bubbles induced by different external sources: Theoretical and experimental study. Phys. Rev. E 81 (5), 056317.CrossRefGoogle ScholarPubMed
Klaseboer, E., Khoo, B.C. & Hung, K.C. 2005 Dynamics of an oscillating bubble near a floating structure. J. Fluids Struct. 21 (4), 395412.CrossRefGoogle Scholar
Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.CrossRefGoogle Scholar
Luo, J., Xu, W.L., & Li, R. 2019 a Collapse of cavitation bubble near air bubbles. J. Hydrodyn. 32 (5), 929941.CrossRefGoogle Scholar
Luo, J., Xu, W.L., Niu, Z.P., Luo, S.J. & Zheng, Q.W. 2013 Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble. J. Hydrodyn. 25 (6), 895902.CrossRefGoogle Scholar
Luo, J., Xu, W., Zhai, Y. & Zhang, Q. 2019 b Experimental study on the mesoscale causes of the influence of viscosity on material erosion in a cavitation field. Ultrason. Sonochem. 59, 104699.CrossRefGoogle Scholar
Madsen, K., Nielsen, H.B., & Tingleff, O. 2004 Methods for non-linear least squares problems.Google Scholar
Menon, S. & Lal, M. 1998 On the dynamics and instability of bubbles formed during underwater explosions. Exp. Therm. Fluid Sci. 16 (4), 305321.CrossRefGoogle Scholar
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., De Bosset, A. & Farhat, M. 2011 Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107 (20), 204501.CrossRefGoogle ScholarPubMed
Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., De Bosset, A. & Farhat, M. 2013 The quest for the most spherical bubble: experimental setup and data overview. Exp. Fluids 54 (4), 1503.CrossRefGoogle Scholar
Ohl, C.D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc. A 357 (1751), 269294.CrossRefGoogle Scholar
Ohl, C.D., Lindau, O. & Lauterborn, W. 1998 Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett. 80 (2), 393.CrossRefGoogle Scholar
Pain, A., Goh, H.T., Klaseboer, B., Ohl, E., W, S. & Cheong Khoo, B. 2012 Jets in quiescent bubbles caused by a nearby oscillating bubble. J. Appl. Phys. 111 (5), 054912.CrossRefGoogle Scholar
Peterka, A.J. 1953 The effect of entrained air on cavitation pitting. In Proceedings: Minnesota International Hydraulic Convention, pp. 507–518. ASCE.Google Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M.S. & Chapman, R.B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.CrossRefGoogle Scholar
Rayleigh, L. 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. Ser. 6 (34), 9498.CrossRefGoogle Scholar
Reuter, F., Gonzalez-Avila, S.R., Mettin, R. & Ohl, C.D. 2017 Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys. Rev. Fluids 2 (6), 064202.CrossRefGoogle Scholar
Reuter, F. & Mettin, R. 2016 Mechanisms of single bubble cleaning. Ultrason. Sonochem. 29, 550562.CrossRefGoogle ScholarPubMed
Robinson, P.B., Blake, J.R., Kodama, T., Shima, A. & Tomita, Y. 2001 Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89 (12), 82258237.CrossRefGoogle Scholar
Sankin, G.N., Simmons, W.N., Zhu, S.L. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95 (3), 034501.CrossRefGoogle ScholarPubMed
Smith, R.H. & Mesler, R.B. 1972 A photographic study of the effect of an air bubble on the growth and collapse of a vapor bubble near a surface. Trans. ASME J. Basic Engng 94 (4), 933940.CrossRefGoogle Scholar
Supponen, O., Akimura, T., Minami, T., Nakajima, T., Uehara, S., Ohtani, K., Kaneko, T., Farhat, M. & Sato, T. 2018 Jetting from cavitation bubbles due to multiple shockwaves. Appl. Phys. Lett. 113 (19), 193703.CrossRefGoogle Scholar
Supponen, O., Kobel, P., Obreschkow, D. & Farhat, M. 2015 The inner world of a collapsing bubble. Phys. Fluids 27 (9), 091113.CrossRefGoogle Scholar
Supponen, O., Obreschkow, D., Kobel, P., Dorsaz, N. & Farhat, M. 2019 Detailed experiments on weakly deformed cavitation bubbles. Exp. Fluids 60 (2), 33.CrossRefGoogle Scholar
Supponen, O., Obreschkow, D., Kobel, P., Tinguely, M., Dorsaz, N. & Farhat, M. 2017 Shock waves from non-spherical cavitation bubbles. Phys. Rev. Fluids 2 (9), 093601.CrossRefGoogle Scholar
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.CrossRefGoogle Scholar
Suslick, K.S., Mdleleni, M.M. & Ries, J.T. 1997 Chemistry induced by hydrodynamic cavitation. J. Am. Chem. Soc. 119 (39), 93039304.CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Tong, R.P., Schiffers, W.P., Shaw, S.J., Blake, J.R. & Emmony, D.C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.CrossRefGoogle Scholar
Tripathi, M.K., Sahu, K.C. & Govindarajan, R. 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6 (1), 19.CrossRefGoogle ScholarPubMed
Turangan, C.K., Ong, G.P., Klaseboer, E. & Khoo, B.C. 2006 Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100 (5), 054910.CrossRefGoogle Scholar
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100 (1), 148165.CrossRefGoogle Scholar
Vogel, A., et al. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B: Lasers Opt. 68 (2), 271280.CrossRefGoogle Scholar
Wang, Q.X., Yeo, K.S., Khoo, B.C. & Lam, K.Y. 1996 a Strong interaction between a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn. 8 (1), 7388.CrossRefGoogle Scholar
Wang, Q.X., Yeo, K.S., Khoo, B.C. & Lam, K.Y. 1996 b Nonlinear interaction between gas bubble and free surface. Comput. Fluids 25 (7), 607628.CrossRefGoogle Scholar
Wang, Y.C. & Chen, Y.W. 2007 Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary. Exp. Therm. Fluid Sci. 32 (2), 403414.CrossRefGoogle Scholar
Xu, W.L., Bai, L.X. & Zhang, F.X. 2010 Interaction of a cavitation bubble and an air bubble with a rigid boundary. J. Hydrodyn. Ser. B 22 (4), 503512.CrossRefGoogle Scholar
Zhang, A.M., Yao, X.L. & Feng, L.H. 2009 The dynamic behavior of a gas bubble near a wall. Ocean Engng 36 (3-4), 295305.CrossRefGoogle Scholar
Zhang, Y., Chen, T., Li, J. & Yu, J. 2017 a Experimental study of load variations on pressure fluctuations in a prototype reversible pump turbine in generating mode. Trans. ASME J. Fluids Engng 139 (7), 074501.CrossRefGoogle Scholar
Zhang, Y., Zhang, Y. & Wu, Y. 2017 b A review of rotating stall in reversible pump turbine. Proc. Inst. Mech. Engrs C: J. Mech. Engng Sci. 231 (7), 11811204.Google Scholar