Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T09:55:38.940Z Has data issue: false hasContentIssue false

Steady-state two-dimensional detonation

Published online by Cambridge University Press:  20 April 2006

J. B. Bdzil
Affiliation:
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

Abstract

An analytical steady-state theory of the detonation ‘diameter effect’ is presented. This theory, which includes the off-axis flow, is a generalization of the Wood-Kirkwood analysis. When the state dependence of the reaction rate is stronger than that of the product of the sound speed squared and the flow divergence, detonation failure can occur. The leading term in the extrapolation of the detonation velocity to infinite charge size is quadratic in the inverse charge size and not linear as popularly believed. When calibrated to the detonation velocity vs. charge-size data, the theory reproduces the limited amount of experimental shock loci to a high degree of accuracy.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bdzil, J. B. 1976 In 6th Symp. on Detonation, ACR-221, pp. 352370. U.S. GPO.
Campbell, A. W. & Engelke, R. 1976 In 6th Symp. on Detonation, ACR-221, pp. 642652. U.S. GPO.
Campbell, A. W. Malin, M. E. & Holland, T. E. 1955 In 2nd ONR Symp. on Detonation, pp. 336359. Office of Naval Research.
Comstock, C. 1972 SIAM Rev. 14, 433446.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves, pp. 273293. Interscience.
Davis, W. C. 1964 Los Alamos Scientific Laboratory, unpublished data.
Davis, W. C. 1965 Los Alamos Scientific Laboratory, unpublished data.
Davis, W. C. 1976 In 6th Symp. on Detonation, ACR-221, pp. 637641. U.S. GPO.
Davis, W. C., Craig, B. G. & Ramsay, J. B. 1965 Phys. Fluids 8, 21692182.
Dremin, A. N. & Savrov, S. D. 1966 Fizika Goreniya i Vzryva 2, 3646.
Eyring, H., Powell, R. E., Duffey, G. H. & Parlin, R. B. 1949 Chem. Rev. 45, 69.
Fickett, W. & Davis, W. C. 1979 Detonation, p. 52. University of California Pres.
Hayes, W. D. 1957 J. Fluid Mech. 2, 595600.
Hayes, W. D. & Probstein, B. F. 1966 Hypersonic Flow Theory, vol. 1, p. 129, p. 21. Academic.
Jones, H. 1947 Proc. Roy. Soc. A 189, 145.
Malin, M. E. 1955 Los Alamos Scientific Laboratory, unpublished data.
Morse, P. & Feshbach, H. 1953 Methods of Theoretical Physics, vol. 1, pp. 2139. McGraw-Hill.
Rao, P. O. 1973 A.I.A.A. J. 11, 13521354.
Tsugé, S., Furukawa, H., Matsukawa, M. & Makagawa, T. 1970 Astronautica Acta 15, 377386.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics, pp. 182192. Parabolic.
Watson, R. W. 1970 In 5th Symp. on Detonation, ACR-184, pp. 169174. U.S. GPO.
Wood, W. W. & Kirkwood, J. G. 1954 J. Chem. Phys. 22, 19201924.
Zeldovich, Ia. B. & Kompaneets, A. S. 1960 Theory of Detonation, p. 160. Academic.