Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T05:53:56.391Z Has data issue: false hasContentIssue false

Steady longitudinal vortices in supersonic turbulent separated flows

Published online by Cambridge University Press:  04 March 2011

ERICH SCHÜLEIN*
Affiliation:
Department of High Speed Configurations, German Aerospace Center DLR, Institute of Aerodynamics and Flow Technology, Bunsenstr. 10, 37073 Göttingen, Germany
VICTOR M. TROFIMOV
Affiliation:
Department of Technology, Novosibirsk State Pedagogical University, ul. Viluyskay 28, 630126 Novosibirsk, Russia
*
Email address for correspondence: [email protected]

Abstract

Large-scale longitudinal vortices in high-speed turbulent separated flows caused by relatively small irregularities at the model leading edges or at the model surfaces are investigated in this paper. Oil-flow visualization and infrared thermography techniques were applied in the wind tunnel tests at Mach numbers 3 and 5 to investigate the nominally 2-D ramp flow at deflection angles of 20°, 25° and 30°. The surface contour anomalies have been artificially simulated by very thin strips (vortex generators) of different shapes and thicknesses attached to the model surface. It is shown that the introduced streamwise vortical disturbances survive over very large downstream distances of the order of 104 vortex-generator heights in turbulent supersonic flows without pressure gradients. It is demonstrated that each vortex pair induced in the reattachment region of the ramp is definitely a child of a vortex pair, which was generated originally, for instance, by the small roughness element near the leading edge. The dependence of the spacing and intensity of the observed longitudinal vortices on the introduced disturbances (thickness and spanwise size of vortex generators) and on the flow parameters (Reynolds numbers, boundary-layer thickness, compression corner angles, etc.) has been shown experimentally.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

del Alamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Berezin, Y. A., Hutter, K. & Zhukov, V. P. 1991 Large-scale vortical structure supported by small-scale turbulent motions: helicity as a cause for inverse energy cascade. Contin. Mech. Thermodyn. 3, 127146.CrossRefGoogle Scholar
Berezin, Y. A. & Trofimov, V. M. 1996 Large-scale vortex generation driven by non-equilibrium turbulence. Fluid Dyn. 31 (1), 3946.CrossRefGoogle Scholar
Bippes, H. & Turk, M. 1984 Oil flow patterns of separated flow on a hemisphere cylinder at incidence. Tech. Rep. DFVLR-FB 84-20, DFVLR (DLR) Göttingen.Google Scholar
Brazhko, V. 1979 Periodic structure of the flow and heat transfer in the reattachment region of supersonic flow (in Russian). Uchenye Zapiski TsAGI 10 (2), 113118.Google Scholar
Chappel, P. D. 1970 Some correlations for the turbulent boundary layer on a flat plate. J. R. Aero. Soc. 74, 393396.Google Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.CrossRefGoogle Scholar
Domröse, U., Krause, E. & Meinke, M. 1996 Numerical simulation of laminar hypersonic shock-boundary layer interaction. Z. Flugwiss. Weltraumforsch. 20, 8994.Google Scholar
Falkovich, G. & Sreenivasan, K. R. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59 (4), 4349.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Ginoux, J. J. 1958 Experimental evidence of three-dimensional perturbations in the reattachment of a two-dimensional laminar boundary layer at M = 2.05. Tech. Rep. TCEA TN1, Training Center for Experimental Aerodynamics, Rhode-Saint-Genèse, Belgium.Google Scholar
Ginoux, J. J. 1960 Laminar separation in supersonic flow with emphasis on three-dimensional perturbations at reattachment. Tech. Rep. TCEA TN3, Training Center for Experimental Aerodynamics, Rhode-Saint-Genèse, Belgium.Google Scholar
Ginoux, J. J. 1969 On some properties of reattaching laminar and transitional high speed flows. Tech. Rep. VKI TN 53, VKI, Rhode-Saint-Genèse, Belgium.Google Scholar
Ginoux, J. J. 1971 Streamwise vortices in reattaching high-speed flows: a suggested approach. AIAA J. 9 (4), 759760.CrossRefGoogle Scholar
Görtler, H. 1940 Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden: Nachrichten der Gesellschaft der Wissenschaften zu Göttingen (in German). Mathematisch-Physikalische Klasse, 1 (2), pp. 126.Google Scholar
Görtler, H. 1941 Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen dreidimensionalen Störungen. ZAMM 21 (4), 250252.CrossRefGoogle Scholar
Henckels, A., Kreins, A. F. & Maurer, F. 1993 Experimental investigations of hypersonic shock-boundary layer interaction. Z. Flugwiss. Weltraumforsch. 17, 116124.Google Scholar
Hicks, R. M. & Harper, W. R. 1970 A comparison of spherical and triangular boundary-layer trips on a flat plate at supersonic speeds. Tech. Rep. TM-X-2146, NASA.Google Scholar
Hornung, H. 1983 The vortex skeleton model for three dimensional steady flows. Tech. Rep. AGARD-CP-342, pp. 2-1–2-12.Google Scholar
Hornung, H. & Perry, A. E. 1982 Streamsurface bifurcation, vortex skeletons and separation Tech. Rep. DLR IB 222-82 A 25, DFVLR (DLR) Göttingen.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 a Amplification of coherent streaks in the turbulent Couette flow: an input–output analysis at low Reynolds number. J. Fluid Mech. 643, 333348.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 b Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105, 044505.CrossRefGoogle ScholarPubMed
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417.CrossRefGoogle Scholar
Kitoh, O. & Umeki, M. 2008 Experimental study on large-scale streak structure in the core region of turbulent plane Couette flow. Phys. Fluids 20, 025107.CrossRefGoogle Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.CrossRefGoogle Scholar
Kreins, A. F., Henckels, A. & Maurer, F. 1996 Experimental studies of hypersonic shock induced boundary layer separation. Z. Flugwiss. Weltraumforsch. 20, 8088.Google Scholar
Lin, J. C. 2002 Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38, 389420.CrossRefGoogle Scholar
Lüdeke, H. 2003 Untersuchungen von Längswirbeln in abgelösten hypersonischen Strömungen (in German). Tech. Rep. DLR FB 2003-04, DLR Braunschweig.Google Scholar
Lüdeke, H., Radespiel, R. & Schülein, E. 2004 Simulation of streamwise vortices at the flaps of re-entry vehicles. In AIAA 2004-0915, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Lüdeke, H. & Schülein, E. 2002 Simulation of streamwise vortices on turbulent hypersonic ramps. In Proceedings of the Second International Conference on CFD, University of Sydney, Australia.Google Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 065103.CrossRefGoogle Scholar
Maurer, E. 1966 Three-dimensional effects in shock-separated flow regions ahead of lateral control-jets issuing from slot nozzles of finite length. Tech. Rep. AGARD-CP-4, Separated Flows, part 2, pp. 605–634.Google Scholar
Moiseev, S. S., Sagdeev, R. Z., Tur, A. V. & Yanovsky, V. V. 1983 Theory of formation of large-scale structures in hydro-dynamical turbulence (in Russian). J. Exp. Theor. Phys. 85, 19791987.Google Scholar
Pearcey, H. H. 1961 Shock induced separation and its prevention by design and boundary layer control. In Boundary Layer and Flow Control (ed. Lachmann, G. V.). vol. 2, pp. 12771312. Pergamon.Google Scholar
Pujals, G., Cossu, C. & Depardon, S. 2010 Forcing large-scale coherent streaks in zero pressure gradient turbulent boundary layer. J. Turbul. 11, 25.CrossRefGoogle Scholar
Roshko, A. & Thomke, G. J. 1966 Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow. AIAA J. 4 (6), 975980.CrossRefGoogle Scholar
Schneider, S. P. 2007 Effects of roughness on hypersonic boundary-layer transition. In AIAA-2007-305, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Schülein, E. 1999 Qualität der Strömung nach der Nachbearbeitung der Überschalldüse ‘M = 3’ des Rohrwindkanals des DLR in Göttingen (in German). Tech. Rep. DLR IB 223-99 A 12, DLR Göttingen.Google Scholar
Schülein, E. 2002 Experimentelle Untersuchungen zur Längswirbelbildung in turbulenten Überschallströmungen mit Ablösungen (in German). Tech. Rep. DLR IB 224-02 A 12, DLR Göttingen.Google Scholar
Schülein, E. 2006 Skin friction and heat flux measurements in shock boundary layer interaction flows. AIAA J. 44 (8), 17321741.CrossRefGoogle Scholar
Schülein, E., Krogmann, P. & Stanewsky, E. 1996 Documentation of two-dimensional impinging shock/turbulent boundary layer interaction flow. Tech. Rep. DLR IB 223-96 A 49, DLR Göttingen.Google Scholar
Schülein, E. & Trofimov, V. M. 2007 Steady longitudinal vortices in separated turbulent flows. In Proceedings of the First CEAS European Air and Space Congress, CEAS-Paper 2007-116, pp. 251–260. DGLR/CEAS.Google Scholar
Simeonides, G. 1993 Hypersonic shock wave boundary layer interactions over simplified deflected control surface configurations. Tech. Rep. AGARD-R-792, Special Course on Shock-Wave/Boundary-Layer Interactions in Supersonic and Hypersonic Flows, pp. 7-1–7-47.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Large scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Trofimov, V. M. & Shtrekalkin, S. I. 1990 Longitudinal vortices and heat transfer in reattached shear layer: separated flows and jets. In IUTAM Symposium, Novosibirsk, Russia, pp. 417420, Springer.Google Scholar
Van Driest, E. R. & Blumer, C. B. 1962 Boundary-layer transition at supersonic speeds: three-dimensional roughness effects (spheres). J. Aerosp. Sci. 29, 909916.CrossRefGoogle Scholar
Vermeulen, J. P. & Simeonides, G. 1992 Parametric studies of shock wave boundary layer interactions in two-dimensional compression corners at Mach 6. Tech. Rep. VKI TN 181, VKI.Google Scholar
Zheltovodov, A. A., Pavlov, A. A., Schülein, E. & Yakovlev, V. N 1985 Interconnection chip between the flow separation and the direct and inverse transition at supersonic speed conditions: laminar–turbulent transition. In IUTAM Symposium, Novosibirsk, Russia, pp. 503508, Springer.Google Scholar