Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T10:19:55.953Z Has data issue: false hasContentIssue false

Steady flow in the region of closed streamlines in a cylindrical cavity

Published online by Cambridge University Press:  29 March 2006

J. L. Duda
Affiliation:
Process Fundamentals Research Laboratory, The Dow Chemical Company, Midland, Michigan
J. S. Vrentas
Affiliation:
Process Fundamentals Research Laboratory, The Dow Chemical Company, Midland, Michigan

Abstract

An analytical solution is developed to describe the steady, closed streamline velocity field within a cylindrical cavity with a uniformly translating wall at low Reynolds numbers. The solution has application for the case of two-phase flow in a tube where regions of fluid are segmented by a moving train of bubbles or plugs, such as in the pulmonary and peripheral capillaries of the body where segments of plasma are trapped between red blood cells. The mathematical approach presented in this study can in principle be useful in the analysis of a wide class of closed-streamline creeping-flow problems.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharji, S. & Savic, P. 1965 Proceedings of Heat Transfer and Fluid Mechanics Institute. Stanford University Press.
Bugliarello, G. & Hsiao, G. C. C. 1967 7th International Conf. on Medical and Biological Engineering.
Burggraf, O. R. 1966 J. Fluid Mech. 24, 113.
Bye, J. A. T. 1966 J. Fluid Mech. 26, 577.
Figueiredo, O. & Charles, M. E. 1968 Can. J. chem. Engng, 46, 62.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Johansson, H., Olgard, G. & Jernqvist, A. 1970 Chem. Engng Sci. 25, 365.
Johns, L. E. & Beckmann, R. B. 1966 A.I.Ch.E.J. 12, 10.
Kantorovich, L. V. & Krylov, V. I. 1958 Approximate Methods of Higher Analysis. New York: Interscience.
Kronig, R. & Brink, J. C. 1950 Appl. sci. Res. A, 2, 142.
Lew, H. S. & Fung, Y. C. 1969 Biorheology, 6, 109.
Lighthill, M. J. 1968 J. Fluid Mech. 34, 113.
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. New York: McGraw-Hill.
Oliver, D. R. & Wright, S. J. 1964 British Chem. Engng, 9, 590.
Oliver, D. R. & Young Hoon, A. 1968a Trans. Inst. chem. Engng, 46, T 106.
Oliver, D. R. & Young Hoon, A. 1968b Trans. Inst. chem. Engng, 46, T 116.
Pan, F. & Acrivos, A. 1967 J. Fluid Mech. 28, 643.
Prothero, J. & Burton, A. C. 1961 Biophys. J. 1, 565.
Prothero, J. & Burton, A. C. 1962 Biophys. J. 2, 199.
Taylor, G. I. 1923 Phil. Trans. A, 223, 289.
Timoshenko, S. & Woinowsky-Krieger, S. 1959 Theory of Plates and Shells. New York: McGraw-Hill.
Wang, H. & Skalak, R. 1969 J. Fluid Mech. 38, 75.
Weiss, R. F. & Florsheim, B. H. 1965 Phys. Fluids, 8, 1631.
Wilkes, J. O. & Churchill, S. W. 1966 A.I.Ch.E.J. 12, 161.
Wingard, L. B. 1969 Chem. Engng Prog. 65, 69.