Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T12:55:29.127Z Has data issue: false hasContentIssue false

Staircase solutions and stability in vertically confined salt-finger convection

Published online by Cambridge University Press:  18 November 2022

Chang Liu*
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Edgar Knobloch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

Bifurcation analysis of confined salt-finger convection using single-mode equations obtained from a severely truncated Fourier expansion in the horizontal is performed. Strongly nonlinear staircase-like solutions having, respectively, one (S1), two (S2) and three (S3) regions of mixed salinity in the vertical direction are computed using numerical continuation, and their stability properties are determined. Near onset, the one-layer S1 solution is stable and corresponds to maximum salinity transport among the three solutions. The S2 and S3 solutions are unstable but exert an influence on the statistics observed in direct numerical simulations (DNS) in larger two-dimensional (2-D) domains. Secondary bifurcations of S1 lead either to tilted-finger (TF1) or to travelling wave (TW1) solutions, both accompanied by the spontaneous generation of large-scale shear, a process favoured for lower density ratios and Prandtl numbers ($Pr$). These states at low $Pr$ are associated, respectively, with two-layer and three-layer staircase-like salinity profiles in the mean. States breaking reflection symmetry in the midplane are also computed. In two dimensions and for low $Pr$, the DNS results favour direction-reversing tilted fingers resembling the pulsating wave state observed in other systems. Two-layer and three-layer mean salinity profiles corresponding to reversing tilted fingers and TW1 are observed in 2-D DNS averaged over time. The single-mode solutions close to the high wavenumber onset are in an excellent agreement with 2-D DNS in small horizontal domains and compare well with 3-D DNS.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ascher, U.M., Ruuth, S.J. & Spiteri, R.J. 1997 Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Maths 25, 151167.CrossRefGoogle Scholar
Baker, L. & Spiegel, E.A. 1975 Modal analysis of convection in a rotating fluid. J. Atmos. Sci. 32, 19091920.2.0.CO;2>CrossRefGoogle Scholar
Balmforth, N.J., Llewellyn Smith, S.G. & Young, W.R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.CrossRefGoogle Scholar
Bassom, A.P. & Zhang, K. 1994 Strongly nonlinear convection cells in a rapidly rotating fluid layer. Geophys. Astrophys. Fluid Dyn. 76, 223238.CrossRefGoogle Scholar
Blennerhassett, P.J. & Bassom, A.P. 1994 Nonlinear high-wavenumber Bénard convection. IMA J. Appl. Maths 52, 5177.CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068.CrossRefGoogle Scholar
Calkins, M.A., Julien, K., Tobias, S.M., Aurnou, J.M. & Marti, P. 2016 Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers: single mode solutions. Phys. Rev. E 93, 023115.CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.CrossRefGoogle ScholarPubMed
Crawford, J.D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387.CrossRefGoogle Scholar
Elder, J.W. 1969 The temporal development of a model of high Rayleigh number convection. J. Fluid Mech. 35, 417437.CrossRefGoogle Scholar
Fer, I., Nandi, P., Holbrook, W.S., Schmitt, R.W. & Páramo, P. 2010 Seismic imaging of a thermohaline staircase in the western tropical North Atlantic. Ocean Sci. 6, 621631.CrossRefGoogle Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50, 275298.CrossRefGoogle Scholar
Garaud, P. & Brummell, N. 2015 2D or not 2D: the effect of dimensionality on the dynamics of fingering convection at low Prandtl number. Astrophys. J. 815, 42.CrossRefGoogle Scholar
Goluskin, D., Johnston, H., Flierl, G.R. & Spiegel, E.A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.CrossRefGoogle Scholar
Gough, D.O., Spiegel, E.A. & Toomre, J. 1975 Modal equations for cellular convection. J. Fluid Mech. 68, 695719.CrossRefGoogle Scholar
Gough, D.O. & Toomre, J. 1982 Single-mode theory of diffusive layers in thermohaline convection. J. Fluid Mech. 125, 7597.CrossRefGoogle Scholar
Graham, M.D. & Floryan, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech. 53, 227253.CrossRefGoogle Scholar
Hage, E. & Tilgner, A. 2010 High Rayleigh number convection with double diffusive fingers. Phys. Fluids 22, 076603.CrossRefGoogle Scholar
Herring, J.R. 1963 Investigation of problems in thermal convection. J. Atmos. Sci. 20, 325338.2.0.CO;2>CrossRefGoogle Scholar
Herring, J.R. 1964 Investigation of problems in thermal convection: rigid boundaries. J. Atmos. Sci. 21, 277290.2.0.CO;2>CrossRefGoogle Scholar
Holyer, J.Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.CrossRefGoogle Scholar
Holyer, J.Y. 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.CrossRefGoogle Scholar
Howard, L.N. & Krishnamurti, R. 1986 Large-scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170, 385410.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 1997 Fully nonlinear oscillatory convection in a rotating layer. Phys. Fluids 9, 19061913.CrossRefGoogle Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48, 065405.CrossRefGoogle Scholar
Julien, K., Knobloch, E. & Tobias, S. 1999 Strongly nonlinear magnetoconvection in three dimensions. Physica D 128, 105129.CrossRefGoogle Scholar
Julien, K., Knobloch, E. & Tobias, S.M. 2000 Nonlinear magnetoconvection in the presence of strong oblique fields. J. Fluid Mech. 410, 285322.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.CrossRefGoogle Scholar
Knobloch, E., Deane, A.E., Toomre, J. & Moore, D.R. 1986 Doubly diffusive waves. Contemp. Maths 56, 203216.CrossRefGoogle Scholar
Knobloch, E., Proctor, M.R.E. & Weiss, N.O. 1992 Heteroclinic bifurcations in a simple model of double-diffusive convection. J. Fluid Mech. 239, 273292.CrossRefGoogle Scholar
Krishnamurti, R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.CrossRefGoogle Scholar
Krishnamurti, R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Kunze, E. 1990 The evolution of salt fingers in inertial wave shear. J. Mar. Res. 48, 471504.CrossRefGoogle Scholar
Lewis, S., Rees, D.A.S. & Bassom, A.P. 1997 High wavenumber convection in tall porous containers heated from below. Q. J. Mech. Appl. Maths 50, 545563.CrossRefGoogle Scholar
Li, J. & Yang, Y. 2022 On the wall-bounded model of fingering double diffusive convection. arXiv:2204.03142.Google Scholar
Linden, P.F. 1978 The formation of banded salt finger structure. J. Geophys. Res. 83, 29022912.CrossRefGoogle Scholar
Lopez, J.M. & Murphy, J.O. 1983 Time-dependent thermal convection. Publ. Astron. Soc. Aust. 5, 173175.CrossRefGoogle Scholar
Lucas, D., Caulfield, C.P. & Kerswell, R.R. 2017 Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities. J. Fluid Mech. 832, 409437.CrossRefGoogle Scholar
Lucas, D., Caulfield, C.P. & Kerswell, R.R. 2019 Layer formation and relaminarisation in plane Couette flow with spanwise stratification. J. Fluid Mech. 868, 97118.CrossRefGoogle Scholar
Malkus, W.V.R. & Veronis, G. 1958 Finite amplitude cellular convection. J. Fluid Mech. 4, 225260.CrossRefGoogle Scholar
Massaguer, J.M. & Mercader, I. 1988 Instability of swirl in low-Prandtl-number thermal convection. J. Fluid Mech. 189, 367395.CrossRefGoogle Scholar
Massaguer, J.M., Mercader, I. & Net, M. 1990 Nonlinear dynamics of vertical vorticity in low-Prandtl-number thermal convection. J. Fluid Mech. 214, 579597.CrossRefGoogle Scholar
Matthews, P.C., Proctor, M.R.E., Rucklidge, A.M. & Weiss, N.O. 1993 Pulsating waves in nonlinear magnetoconvection. Phys. Lett. A 183, 6975.CrossRefGoogle Scholar
Morell, J.M., Corredor, J.E. & Merryfield, W.J. 2006 Thermohaline staircases in a Caribbean eddy and mechanisms for staircase formation. Deep-Sea Res. (II) 53, 128139.Google Scholar
Muench, R.D., Fernando, H.J.S. & Stegen, G.R. 1990 Temperature and salinity staircases in the northwestern Weddell Sea. J. Phys. Oceanogr. 20, 295306.2.0.CO;2>CrossRefGoogle Scholar
Murphy, J.O. & Lopez, J.M. 1984 The influence of vertical vorticity on thermal convection. Aust. J. Phys. 37, 179196.CrossRefGoogle Scholar
Oglethorpe, R.L.F., Caulfield, C.P. & Woods, A.W. 2013 Spontaneous layering in stratified turbulent Taylor–Couette flow. J. Fluid Mech. 721, R3.CrossRefGoogle Scholar
Padman, L. & Dillon, T.M. 1989 Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-Sea Res. (I) 36, 531542.CrossRefGoogle Scholar
Paparella, F. 1997 A few steps toward staircases. In Double-Diffusive Processes, 1996 Summer Study Program in Geophysical Fluid Dynamics, Woods Hole Oceanog. Inst. Tech. Rept., WHOI-97-10. pp. 232–247. https://hdl.handle.net/1912/385.Google Scholar
Paparella, F. & Spiegel, E.A. 1999 Sheared salt fingers: instability in a truncated system. Phys. Fluids 11, 11611168.CrossRefGoogle Scholar
Paparella, F., Spiegel, E.A. & Talon, S. 2002 Shear and mixing in oscillatory doubly diffusive convection. Geophys. Astrophys. Fluid Dyn. 96, 271289.CrossRefGoogle Scholar
Phillips, O.M. 1972 Turbulence in a strongly stratified fluid—Is it unstable? Deep Sea Res. Oceanogr. Abstr. 19, 7981.CrossRefGoogle Scholar
Piacsek, S.A. & Toomre, J. 1980 Nonlinear evolution and structure of salt fingers. In Marine Turbulence, Proceedings of the 11th International Liège Colloquium on Ocean Hydrodynamics (ed. J.C.J. Nihoul), vol. 28, pp. 193–219. Elsevier oceanography series.CrossRefGoogle Scholar
Plumley, M., Calkins, M.A., Julien, K. & Tobias, S.M. 2018 Self-consistent single mode investigations of the quasi-geostrophic convection-driven dynamo model. J. Plasma Phys. 84, 735840406.CrossRefGoogle Scholar
van der Poel, E.P., Stevens, R.J.A.M. & Lohse, D. 2013 Comparison between two- and three-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 736, 177194.CrossRefGoogle Scholar
van der Poel, E.P., Stevens, R.J.A.M., Sugiyama, K. & Lohse, D. 2012 Flow states in two-dimensional Rayleigh–Bénard convection as a function of aspect-ratio and Rayleigh number. Phys. Fluids 24, 085104.CrossRefGoogle Scholar
Posmentier, E.S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys. Oceanogr. 7, 298300.2.0.CO;2>CrossRefGoogle Scholar
Proctor, M.R.E. & Holyer, J.Y. 1986 Planform selection in salt fingers. J. Fluid Mech. 168, 241253.CrossRefGoogle Scholar
Proctor, M.R.E. & Weiss, N.O. 1993 Symmetries of time-dependent magnetoconvection. Geophys. Astrophys. Fluid Dyn. 70, 137160.CrossRefGoogle Scholar
Proctor, M.R.E., Weiss, N.O., Brownjohn, D.P. & Hurlburt, N.E. 1994 Nonlinear compressible magnetoconvection Part 2. Streaming instabilities in two dimensions. J. Fluid Mech. 280, 227253.CrossRefGoogle Scholar
Rademacher, J.D.M. & Uecker, H. 2017 Symmetries, freezing, and Hopf bifurcations of traveling waves in pde2path. https://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts/symtut.pdf.Google Scholar
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.CrossRefGoogle Scholar
Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.CrossRefGoogle Scholar
Radko, T. 2010 Equilibration of weakly nonlinear salt fingers. J. Fluid Mech. 645, 121143.CrossRefGoogle Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.CrossRefGoogle Scholar
Radko, T. 2016 Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805, 147170.CrossRefGoogle Scholar
Radko, T. & Stern, M.E. 1999 Salt fingers in three dimensions. J. Mar. Res. 57, 471502.CrossRefGoogle Scholar
Radko, T. & Stern, M.E. 2000 Finite-amplitude salt fingers in a vertically bounded layer. J. Fluid Mech. 425, 133160.CrossRefGoogle Scholar
Rhines, P.B. & Young, W.R. 1983 How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.CrossRefGoogle Scholar
Rucklidge, A.M. & Matthews, P.C. 1996 Analysis of the shearing instability in nonlinear convection and magnetoconvection. Nonlinearity 9, 311351.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2012 Stability and Transition in Shear Flows. Springer.Google Scholar
Schmitt, R.W., Ledwell, J.R., Montgomery, E.T., Polzin, K.L. & Toole, J.M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.CrossRefGoogle ScholarPubMed
Schmitt, R.W., Perkins, H., Boyd, J.D. & Stalcup, M.C. 1987 C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep Sea Res. A 34, 16551665.CrossRefGoogle Scholar
Siggia, E.D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Spear, D.J. & Thomson, R.E. 2012 Thermohaline staircases in a British Columbia fjord. Atmos.-Ocean 50, 127133.CrossRefGoogle Scholar
St. Laurent, L. & Schmitt, R.W. 1999 The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr. 29, 14041424.2.0.CO;2>CrossRefGoogle Scholar
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.CrossRefGoogle Scholar
Stern, M.E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R.J.A.M., Chan, T.S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Tait, R.I. & Howe, M.R. 1968 Some observations of thermo-haline stratification in the deep ocean. Deep Sea Res. Oceanogr. Abstr. 15, 275280.CrossRefGoogle Scholar
Tait, R.I. & Howe, M.R. 1971 Thermohaline staircase. Nature 231, 178179.CrossRefGoogle ScholarPubMed
Taylor, J. & Bucens, P. 1989 Laboratory experiments on the structure of salt fingers. Deep Sea Res. A 36, 16751704.CrossRefGoogle Scholar
Taylor, J.R. & Zhou, Q. 2017 A multi-parameter criterion for layer formation in a stratified shear flow using sorted buoyancy coordinates. J. Fluid Mech. 823, R5.CrossRefGoogle Scholar
Timmermans, M.-L., Toole, J., Krishfield, R. & Winsor, P. 2008 Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res. 113, C00A02.Google Scholar
Toomre, J., Gough, D.O. & Spiegel, E.A. 1977 Numerical solutions of single-mode convection equations. J. Fluid Mech. 79, 131.CrossRefGoogle Scholar
Uecker, H. 2021 a Numerical Continuation and Bifurcation in Nonlinear PDEs. SIAM.CrossRefGoogle Scholar
Uecker, H., Wetzel, D. & Rademacher, J.D.M. 2014 pde2path: a Matlab package for continuation and bifurcation in 2D elliptic systems. Numer. Math. Theory Meth. Applics. 7, 58106.CrossRefGoogle Scholar
van Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38, 1946.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25, 085110.CrossRefGoogle Scholar
Wang, Q., Verzicco, R., Lohse, D. & Shishkina, O. 2020 Multiple states in turbulent large-aspect-ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125, 074501.CrossRefGoogle ScholarPubMed
Weideman, J.A. & Reddy, S.C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465519.CrossRefGoogle Scholar
Winchester, P., Dallas, V. & Howell, P.D. 2021 Zonal flow reversals in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Fluids 6, 033502.CrossRefGoogle Scholar
Winchester, P., Howell, P.D. & Dallas, V. 2022 The onset of zonal modes in two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 939, A8.CrossRefGoogle Scholar
Xia, Z., Shi, Y., Cai, Q., Wan, M. & Chen, S. 2018 Multiple states in turbulent plane Couette flow with spanwise rotation. J. Fluid Mech. 837, 477490.CrossRefGoogle Scholar
Xie, J.-H., Julien, K. & Knobloch, E. 2019 Jet formation in salt-finger convection: a modified Rayleigh–Bénard problem. J. Fluid Mech. 858, 228263.CrossRefGoogle Scholar
Xie, J.-H., Miquel, B., Julien, K. & Knobloch, E. 2017 A reduced model for salt-finger convection in the small diffusivity ratio limit. Fluids 2, 6.CrossRefGoogle Scholar
Yang, X.I.A. & Xia, Z. 2021 Bifurcation and multiple states in plane Couette flow with spanwise rotation. J. Fluid Mech. 913, A49.CrossRefGoogle Scholar
Yang, Y., Chen, W., Verzicco, R. & Lohse, D. 2020 Multiple states and transport properties of double-diffusive convection turbulence. Proc. Natl Acad. Sci. USA 117, 1467614681.CrossRefGoogle ScholarPubMed
Yang, Y., van der Poel, E.P., Ostilla-Mónico, R., Sun, C., Verzicco, R., Grossmann, S. & Lohse, D. 2015 Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476491.CrossRefGoogle Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016 a Scaling laws and flow structures of double diffusive convection in the finger regime. J. Fluid Mech. 802, 667689.CrossRefGoogle Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016 b Vertically bounded double diffusive convection in the finger regime: comparing no-slip versus free-slip boundary conditions. Phys. Rev. Lett. 117, 184501.CrossRefGoogle ScholarPubMed
Yang, Y., Verzicco, R., Lohse, D. & Caulfield, C.P. 2022 Layering and vertical transport in sheared double-diffusive convection in the diffusive regime. J. Fluid Mech. 933, A30.CrossRefGoogle Scholar
Zahn, J.-P., Toomre, J., Spiegel, E.A. & Gough, D.O. 1974 Nonlinear cellular motions in Poiseuille channel flow. J. Fluid Mech. 64, 319346.CrossRefGoogle Scholar
Zhang, X., Wang, L.-L., Lin, C., Zhu, H. & Zeng, C. 2018 Numerical study on tilting salt finger in a laminar shear flow. Phys. Fluids 30, 022110.CrossRefGoogle Scholar
Zodiatis, G. & Gasparini, G.P. 1996 Thermohaline staircase formations in the Tyrrhenian Sea. Deep-Sea Res. (I) 43, 655678.CrossRefGoogle Scholar

Liu et al. Supplementary Movie 1

Movie corresponding to figure 7.

Download Liu et al. Supplementary Movie 1(Video)
Video 9.6 MB

Liu et al. Supplementary Movie 2

Movie corresponding to figure 8.

Download Liu et al. Supplementary Movie 2(Video)
Video 9.5 MB

Liu et al. Supplementary Movie 3

Movie corresponding to figure 23.

Download Liu et al. Supplementary Movie 3(Video)
Video 9.4 MB