Article contents
Stability of thermoviscous Hele-Shaw flow
Published online by Cambridge University Press: 26 April 2006
Abstract
Viscous fingering can occur as a three-dimensional disturbance to plane flow of a hot thermoviscous liquid in a Hele-Shaw cell with cold isothermal walls. This work assumes the principle of exchange of stabilities, and uses a temporal stability analysis to find the critical viscosity ratio and finger spacing as functions of channel length, Lc. Viscous heating is taken as negligible, so the liquid cools with distance (x) downstream. Because the base flow is spatially developing, the disturbance equations are not fully separable. They admit, however, an exact solution for a liquid whose viscosity and specific heats are arbitrary functions of temperature. This solution describes the neutral disturbances in terms of the base flow and an amplitude, A(x). The stability of a given (computed) base flow is determined by solving an eigenvalue problem for A(x), and the critical finger spacing. The theory is illustrated by using it to map the instability for variable-viscosity flow with constant specific heat. Two fingering modes are predicted, one being a turning-point instability. The preferred mode depends on Lc. Finger spacing is comparable with the thermal entry length in a long channel, and is even larger in short channels. When applied to magmatic systems, the results suggest that fingering will occur on geological scales only if the system is about freeze.
- Type
- Research Article
- Information
- Copyright
- © 1996 Cambridge University Press
References
- 4
- Cited by