Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-17T04:01:32.911Z Has data issue: false hasContentIssue false

The stability of capillary waves on fluid sheets

Published online by Cambridge University Press:  29 September 2016

M. G. Blyth*
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
E. I. Părău
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
*
Email address for correspondence: [email protected]

Abstract

The linear stability of finite-amplitude capillary waves on inviscid sheets of fluid is investigated. A method similar to that recently used by Tiron & Choi (J. Fluid Mech., vol. 696, 2012, pp. 402–422) to determine the stability of Crapper waves on fluid of infinite depth is developed by extending the conformal mapping technique of Dyachenko et al. (Phys. Lett. A, vol. 221 (1), 1996a, pp. 73–79) to a form capable of capturing general periodic waves on both the upper and the lower surface of the sheet, including the symmetric and antisymmetric waves studied by Kinnersley (J. Fluid Mech., vol. 77 (02), 1976, pp. 229–241). The primary, surprising result is that both symmetric and antisymmetric Kinnersley waves are unstable to small superharmonic disturbances. The waves are also unstable to subharmonic perturbations. Growth rates are computed for a range of steady waves in the Kinnersley family, and also waves found along the bifurcation branches identified by Blyth & Vanden-Broeck (J. Fluid Mech., vol. 507, 2004, pp. 255–264). The instability results are corroborated by time integration of the fully nonlinear unsteady equations. Evidence is presented for superharmonic instability of nonlinear waves via a collision of eigenvalues on the imaginary axis which appear to have the same Krein signature.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, B. & Nicholls, D. P. 2012 Spectral stability of deep two-dimensional gravity water waves: repeated eigenvalues. SIAM J. Appl. Maths 72 (2), 689711.Google Scholar
Akers, B. & Nicholls, D. P. 2013 Spectral stability of deep two-dimensional gravity–capillary water waves. Stud. Appl. Maths 130 (2), 81107.Google Scholar
Akers, B. & Nicholls, D. P. 2014 The spectrum of finite depth water waves. Eur. J. Mech. (B/Fluids) 46, 181189.Google Scholar
Barlow, N. S., Helenbrook, B. T. & Lin, S. P. 2011 Transience to instability in a liquid sheet. J. Fluid Mech. 666, 358390.Google Scholar
Benjamin, T. B & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27 (03), 417430.Google Scholar
Benjamin, T. B. & Olver, P. J. 1982 Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137185.Google Scholar
Benney, D. J. & Roskes, G. J. 1969 Wave instabilities. Stud. Appl. Maths 48 (377), 377385.Google Scholar
Billingham, J. 2006 Surface tension-driven flow in a slender wedge. SIAM J. Appl. Math. 66 (6), 19491977.Google Scholar
Blyth, M. G., Părău, E. I. & Vanden-Broeck, J.-M. 2011 Hydroelastic waves on fluid sheets. J. Fluid Mech. 689, 541551.Google Scholar
Blyth, M. G. & Vanden-Broeck, J.-M. 2004 New solutions for capillary waves on fluid sheets. J. Fluid Mech. 507, 255264.Google Scholar
Bridges, T. J. & Donaldson, N. M. 2011 Variational principles for water waves from the viewpoint of a time-dependent moving mesh. Mathematika 57 (01), 147173.Google Scholar
Byrd, P. F. & Friedman, M. D. 1971 Handbook of Elliptic Integrals for Engineers and Scientists. Springer.Google Scholar
Chen, B. & Saffman, P. G. 1980 Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Maths 62, 121.Google Scholar
Chen, B. & Saffman, P. G. 1985 Three-dimensional stability and bifurcation of capillary and gravity waves on deep water. Stud. Appl. Maths 77 (2), 125147.Google Scholar
Choi, W. & Camassa, R. 1999 Exact evolution equations for surface waves. J. Engng Mech. 125 (7), 756760.Google Scholar
Constantin, A. & Strauss, W. 2010 Pressure beneath a stokes wave. Commun. Pure Appl. Maths 63 (4), 533557.Google Scholar
Crapper, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2 (06), 532540.Google Scholar
Crowdy, D. G. 1999 Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear Sci. 9 (6), 615640.Google Scholar
Deconinck, B. & Oliveras, K. 2011 The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141167.Google Scholar
Deconinck, B. & Trichtchenko, O. 2014 Stability of periodic gravity waves in the presence of surface tension. Eur. J. Mech. (B/Fluids) 46, 97108.Google Scholar
Dias, F. & Kharif, C. 1999 Nonlinear gravity and capillary–gravity waves. Annu. Rev. Fluid Mech. 31 (1), 301346.Google Scholar
Djordjevic, V. D. & Redekopp, L. G. 1977 On two-dimensional packets of capillary–gravity waves. J. Fluid Mech. 79 (04), 703714.Google Scholar
Dyachenko, A. I., Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. 1996a Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221 (1), 7379.Google Scholar
Dyachenko, A. I., Zakharov, V. E. & Kuznetsov, E. A. 1996b Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys. Rep. 22, 829840.Google Scholar
Groves, M. D. & Toland, J. F. 1997 On variational formulations for steady water waves. Arch. Rat. Mech. Anal. 137 (3), 203226.Google Scholar
Hammack, J. L. & Henderson, D. M. 1993 Resonant interactions among surface water waves. Annu. Rev. Fluid Mech. 25 (1), 5597.Google Scholar
Hogan, S. J. 1985 The fourth-order evolution equation for deep-water gravity–capillary waves. Proc. R. Soc. Lond. A 402 (1823), 359372.Google Scholar
Hogan, S. J. 1988 The superharmonic normal mode instabilities of nonlinear deep-water capillary waves. J. Fluid Mech. 190, 165177.Google Scholar
Kinnersley, W. 1976 Exact large amplitude capillary waves on sheets of fluid. J. Fluid Mech. 77 (02), 229241.Google Scholar
Krein, M. G. 1950 A generalization of some investigations of linear differential equations with periodic coefficients. Dokl. Akad. Nauk SSSR 73, 445448.Google Scholar
Longuet-Higgins, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep water. Part I. Superharmonics. Proc. R. Soc. Lond. A 360, 471488.Google Scholar
Mackay, R. S. 1987 Stability of equilibria of Hamiltonian systems. In Hamiltonian Dynamical Systems: A Reprint Selection, pp. 137153. IOP Publishing.Google Scholar
Mackay, R. S. & Saffman, P. G. 1986 Stability of water waves. Proc. R. Soc. Lond. A 406 (1830), 115125.Google Scholar
Peregrine, D. H., Shoker, G. & Symon, A. 1990 The bifurcation of liquid bridges. J. Fluid Mech. 212, 2539.Google Scholar
Rayleigh, J. W. S. 1896 The Theory of Sound, vol ii. Macmillan.Google Scholar
Saffman, P. G. 1985 The superharmonic instability of finite-amplitude water waves. J. Fluid Mech. 159, 169174.Google Scholar
Sandstede, B. 2002 Stability of travelling waves. In Handbook of Dynamical Systems II (ed. Fiedler, B.), pp. 9831055. North-Holland.Google Scholar
Squire, H. B. 1953 Investigation of the instability of a moving liquid film. British J. Appl. Phys. 4 (6), 167169.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. Part II. Waves on fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 296312.Google Scholar
Tiron, R. & Choi, W. 2012 Linear stability of finite-amplitude capillary waves on water of infinite depth. J. Fluid Mech. 696, 402422.Google Scholar
Turner, M. R. & Bridges, T. J. 2016 Time-dependent conformal mapping of doubly-connected regions. Adv. Comput. Math. 42, 947972.Google Scholar
Vasan, V. & Deconinck, B. 2013 The bernoulli boundary condition for traveling water waves. Appl. Math. Lett. 26 (4), 515519.Google Scholar
Viotti, C., Dutykh, D. & Dias, F. 2014 The conformal-mapping method for surface gravity waves in the presence of variable bathymetry and mean current. Procedia IUTAM 11, 110118.Google Scholar
Wilkening, J. & Vasan, V. 2015 Comparison of five methods of computing the Dirichlet–Neumann operator for the water wave problem. Contemp. Maths 635, 175210.Google Scholar
Williamson, J. 1936 On the algebraic problem concerning the normal forms of linear dynamical systems. Amer. J. Math. 58, 141163.Google Scholar