Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T01:43:04.729Z Has data issue: false hasContentIssue false

Stability analysis of boundary layers controlled by miniature vortex generators

Published online by Cambridge University Press:  06 November 2015

L. Siconolfi
Affiliation:
Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, 56126 Pisa, Italy
S. Camarri
Affiliation:
Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, 56126 Pisa, Italy
J. H. M. Fransson*
Affiliation:
Linné Flow Centre, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

It is currently known that Tollmien–Schlichting (TS) waves can be attenuated by the introduction of spanwise mean velocity gradients in an otherwise two-dimensional boundary layer (BL). The stabilizing effect, associated with an extra turbulence production term, is strong enough to obtain a delay in transition to turbulence induced by TS waves, with the implication of reducing skin-friction drag. Miniature vortex generators (MVGs), mounted in an array, have successfully been used to obtain velocity modulations by the generation of alternating high- and low-speed streaks in the spanwise direction to control the BL. Experimentally, an initial amplification of the TS waves has been reported, which takes place in the near-wake region of the MVG array. The higher the streak amplitude, the stronger the downstream stabilizing effect becomes, but with the drawback of experiencing an even stronger initial amplification. This can lead to a sub-critical transitional Reynolds number, which would not only mean that the control has failed but, even worse, also lead to an advancement of the transition location. Here, direct numerical simulations and a local spatial stability analysis have been performed in order to reach a deeper understanding of this behaviour. The results agree well with experiments and we propose an explanation of the described behavior in terms of stability properties of the controlled BL. This important knowledge can be used in future designs of BL modulators, which can lead to improved stability of the control and to an extended region of laminar flow.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layers streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J. Fluid Mech. 281, 219245.CrossRefGoogle Scholar
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229262.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.Google Scholar
Camarri, S., Fransson, J. H. M. & Talamelli, A. 2013 Numerical investigation of the afrodite transition control strategy. In Progress in Turbulence V (ed. Talamelli, A., Oberlack, M. & Peinke, J.), pp. 6569. Springer.Google Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the Blasius boundary layer. Phys. Fluids 14, L57L60.Google Scholar
Cossu, C. & Brandt, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23, 815833.CrossRefGoogle Scholar
De Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.Google Scholar
Downs, R. S. & Fransson, J. H. M. 2014 Tollmien–Schlichting wave growth over spanwise-periodic surface patterns. J. Fluid Mech. 754, 3974.Google Scholar
Fransson, J. H. M.2001 Investigations of the asymptotic suction boundary layer. TRITA-MEK Tech. Rep. 2001:11. Licentiate thesis, KTH, Stockholm.Google Scholar
Fransson, J. H. M. 2010 Turbulent spot evolution in spatially invariant boundary layers. Phys. Rev. E 81, 035301(R).Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005 Experimental study of the stabilisation of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17, 054110.Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.Google Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14 (14), 222224.Google Scholar
Herbert, T. 1988 Secondary instability of boundary-layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Hernandez, V., Roman, J. & Vidal, V. 2005 Slepc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31 (3), 351362.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Kachanov, Y. S. 1994 Physical mechanism of laminar boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.Google Scholar
Kachanov, Y. S. & Tararykin, O. I. 1987 Experimental investigation of a relaxating boundary layer. Izv. Akad. Nauk SSSR, Ser. Tech. Nauk 18 (5), 919.Google Scholar
Konishi, Y. & Asai, M. 2004 Experimental investigation of the instability of spanwise-periodic low-speed streaks. Fluid Dyn. Res. 34 (5), 299315.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.Google Scholar
Piot, E., Casalis, G. & Rist, U. 2008 Stability of the laminar boundary layer flow encountering a row of roughness elements: biglobal stability approach and DNS. Eur. J. Mech. (B/Fluids) 27, 684706.Google Scholar
Riherd, M. & Roy, S. 2013 Damping Tollmien–Schlichting waves in a boundary layer using plasma actuators. J. Phys. D: Appl. Phys. 46, 485203.Google Scholar
Sattarzadeh, S. S. & Fransson, J. H. M. 2014 Experimental investigation on the steady and unsteady disturbances in a flat plate boundary layer. Phys. Fluids 26, 124103.Google Scholar
Sattarzadeh, S. S., Fransson, J. H. M., Talamelli, A. & Fallenius, B. E. G. 2014 Consecutive turbulence transition delay with reinforced passive control. Phys. Rev. E 89, 061001(R).Google Scholar
Schlichting, H. 1933 Berechnung der anfachung kleiner störungen bei der plattenströmung. Z. Angew. Math. Mech. 13, 171174.Google Scholar
Schubauer, G. B. & Skramstad, H. K. 1947 Laminar boundary layer oscillations and the stability of laminar flow. J. Aero. Sci. 14, 6978.Google Scholar
Shahinfar, S., Fransson, J. H. M., Sattarzadeh, S. S. & Talamelli, A. 2013 Scaling of streamwise boundary layer streaks and their ability to reduce skin-friction drag. J. Fluid Mech. 733, 132.Google Scholar
Shahinfar, S., Sattarzadeh, S. S. & Fransson, J. H. M. 2014 Passive boundary layer control of oblique disturbances by finite-amplitude streaks. J. Fluid Mech. 749, 136.Google Scholar
Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109, 074501.Google Scholar
Siconolfi, L., Camarri, S. & Fransson, J. H. M. 2015 Boundary layer stabilization using free-stream vortices. J. Fluid Mech. 764, R2; 1–12.Google Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.CrossRefGoogle Scholar
Tollmien, W. 1929 Über die entstehung der turbulenz. Nachr. Ges. Wiss. Göttingen 2124; English translation NACA TM 609, 1931.Google Scholar
White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14, 44294439.Google Scholar
Zuccher, S., Bottaro, A. & Luchini, P. 2006 Algebraic growth in a blasius boundary layer: nonlinear optimal disturbances. Eur. J. Mech. (B/Fluids) 25 (1), 117.Google Scholar