Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T20:30:06.410Z Has data issue: false hasContentIssue false

Spatio-temporal fluctuations of interscale and interspace energy transfer dynamics in homogeneous turbulence

Published online by Cambridge University Press:  15 August 2023

H.S. Larssen*
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
J.C. Vassilicos*
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK UMR 9014 - LMFL - Laboratoire de Mécanique des fluides de Lille - Kampé de Feriet, Univ. Lille, CNRS, ONERA, Arts et Métiers ParisTech, Centrale Lille, F-59000 Lille, France
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We study fluctuations of all co-existing energy exchange/transfer/transport processes in stationary periodic turbulence including those that average to zero and are not present in average cascade theories. We use a Helmholtz decomposition of accelerations that leads to a decomposition of all terms in the Kármán–Howarth–Monin–Hill (KHMH) equation (scale-by-scale two-point energy balance) causing it to break into two energy balances, one resulting from the integrated two-point vorticity equation and the other from the integrated two-point pressure equation. The various two-point acceleration terms in the Navier–Stokes difference (NSD) equation for the dynamics of two-point velocity differences have similar alignment tendencies with the two-point velocity difference, implying similar characteristics for the NSD and KHMH equations. We introduce the two-point sweeping concept and show how it articulates with the fluctuating interscale energy transfer as the solenoidal part of the interscale transfer rate does not fluctuate with turbulence dissipation at any scale above the Taylor length but with the sum of the time derivative and the solenoidal interspace transport rate terms. The pressure fluctuations play an important role in the interscale and interspace turbulence transfer/transport dynamics as the irrotational part of the interscale transfer rate is equal to the irrotational part of the interspace transfer rate and is balanced by two-point fluctuating pressure work. We also study the homogeneous/inhomogeneous decomposition of interscale transfer. The statistics of the latter are skewed towards forward cascade events whereas the statistics of the former are not. We also report statistics conditioned on intense forward/backward interscale transfer events.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J. Fluid Mech. 896, A16.Google Scholar
Bardina, J., Ferziger, J. & Reynolds, W. 1980 Improved subgrid-scale models for large-eddy simulation. In 13th Fluid and Plasma Dynamics Conference. AIAA.CrossRefGoogle Scholar
Bhatia, H., Norgard, G., Pascucci, V. & Bremer, P. 2013 The Helmholtz-Hodge decomposition–a survey. IEEE Trans. Vis. Comput. Graph. 19 (8), 13861404.CrossRefGoogle ScholarPubMed
Chen, J.G., Cuvier, C., Foucaut, J.-M., Ostovan, Y. & Vassilicos, J.C. 2021 A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms. J. Fluid Mech. 924, A4.CrossRefGoogle Scholar
Chen, J.G. & Vassilicos, J.C. 2022 Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence. J. Fluid Mech. 938, A7.CrossRefGoogle Scholar
Chevillard, L., Roux, S.G., Lévêque, E., Mordant, N., Pinton, J.-F. & Arnéodo, A. 2005 Intermittency of velocity time increments in turbulence. Phys. Rev. Lett. 95 (6), 64501.CrossRefGoogle ScholarPubMed
Cimarelli, A., Abbà, A. & Germano, M. 2019 General formalism for a reduced description and modelling of momentum and energy transfer in turbulence. J. Fluid Mech. 866, 865896.CrossRefGoogle Scholar
Dairay, T., Lamballais, E., Laizet, S. & Vassilicos, J.C. 2017 Numerical dissipation vs subgrid-scale modelling for large eddy simulation. J. Comput. Phys. 337, 252274.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galanti, B. & Tsinober, A. 2000 Self-amplification of the field of velocity derivatives in quasi-isotropic turbulence. Phys. Fluids 12 (12), 30973099.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2016 Unsteady turbulence cascades. Phys. Rev. E 94 (5), 53108.CrossRefGoogle ScholarPubMed
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J. Fluid Mech. 589, 83102.CrossRefGoogle Scholar
Helmholtz, H. 1867 On integrals of the hydrodynamical equations, which express vortex-motion. Lond. Edinb. Dubl. Phil. Mag. 33 (226), 485512.Google Scholar
Hill, R.J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Hill, R.J. & Thoroddsen, S.T. 1997 Experimental evaluation of acceleration correlations for locally isotropic turbulence. Phys. Rev. E 55 (2), 16001606.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kolmogorov, A.N. 1941 b On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Kolmogorov, A.N. 1941 c The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Leschziner, M. 2016 Statistical Turbulence Modelling for Fluid Dynamics, Demystified: An Introductory Text for Graduate Engineering Students. Imperial College Press.Google Scholar
Linkmann, M. 2018 Effects of helicity on dissipation in homogeneous box turbulence. J. Fluid Mech. 856, 79102.CrossRefGoogle Scholar
Linkmann, M., Buzzicotti, M. & Biferale, L. 2018 Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities. J. Turbul. 19 (6), 493527.CrossRefGoogle Scholar
Linkmann, M.F. & Morozov, A. 2015 Sudden relaminarization and lifetimes in forced isotropic turbulence. Phys. Rev. Lett. 115 (13), 134502.CrossRefGoogle ScholarPubMed
McComb, W.D., Berera, A., Yoffe, S.R. & Linkmann, M.F. 2015 a Energy transfer and dissipation in forced isotropic turbulence. Phys. Rev. E 91 (4), 43013.CrossRefGoogle ScholarPubMed
McComb, W.D., Linkmann, M.F., Berera, A., Yoffe, S.R. & Jankauskas, B. 2015 b Self- organization and transition to turbulence in isotropic fluid motion driven by negative damping at low wavenumbers. J. Phys. A 48 (25), 25FT01.CrossRefGoogle Scholar
Monin, A.S, Yaglom, A.M. & Lumley, J.L. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Moser, R.D., Haering, S.W. & Yalla, G.R. 2021 Statistical properties of subgrid-scale turbulence models. Annu. Rev. Fluid Mech. 53 (1), 255286.CrossRefGoogle Scholar
Patterson, G.S. & Orszag, S.A. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.CrossRefGoogle Scholar
Podvigina, O. & Pouquet, A. 1994 On the non-linear stability of the 1:1:1 ABC flow. Physica D 75 (4), 471508.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sagaut, P. 2000 Large Eddy Simulation for Incompressible Flows: An Introduction, 1st edn. Springer.Google Scholar
Schumacher, J., Scheel, J.D., Krasnov, D., Donzis, D.A., Yakhot, V. & Sreenivasan, K.R. 2014 Small-scale universality in fluid turbulence. Proc. Natl Acad. Sci. USA 111 (30), 1096110965.CrossRefGoogle ScholarPubMed
Sprössig, W. 2010 On Helmholtz decompositions and their generalizations–an overview. Math. Meth. Appl. Sci. 33 (4), 374383.Google Scholar
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.CrossRefGoogle Scholar
Steiros, K. 2022 Balanced nonstationary turbulence. Phys. Rev. E 105 (3), 35109.CrossRefGoogle ScholarPubMed
Stewart, A.M. 2012 Longitudinal and transverse components of a vector field. Sri Lankan J. Phys. 12, 33.CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A. & Djenidi, L. 2022 Transport equations for the normalized $n$th-order moments of velocity derivatives in grid turbulence. J. Fluid Mech. 930, A31.CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.Google Scholar
Tsinober, A., Vedula, P. & Yeung, P.K. 2001 Random Taylor hypothesis and the behavior of local and convective accelerations in asotrophic turbulence. Phys. Fluids 13 (7), 19741984.CrossRefGoogle Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.CrossRefGoogle Scholar
Vedula, P. & Yeung, P.K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11 (5), 12081220.CrossRefGoogle Scholar
Vela-Martín, A. 2022 Subgrid-scale models of isotropic turbulence need not produce energy backscatter. J. Fluid Mech. 937, A14.CrossRefGoogle Scholar
Xu, H., Ouellette, N.T., Vincenzi, D. & Bodenschatz, E. 2007 Acceleration correlations and pressure structure functions in high-Reynolds number turbulence. Phys. Rev. Lett. 99 (20), 204501.CrossRefGoogle ScholarPubMed
Yasuda, T. & Vassilicos, J.C. 2018 Spatio-temporal intermittency of the turbulent energy cascade. J. Fluid Mech. 853, 235252.CrossRefGoogle Scholar
Yeung, P.K., Pope, S.B., Lamorgese, A.G. & Donzis, D.A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18 (6), 65103.CrossRefGoogle Scholar