Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T11:39:21.332Z Has data issue: false hasContentIssue false

Spanwise-localized solutions of planar shear flows

Published online by Cambridge University Press:  17 March 2014

J. F. Gibson*
Affiliation:
Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA
E. Brand
Affiliation:
Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA
*
Email address for correspondence: [email protected]

Abstract

We present several new spanwise-localized equilibrium and travelling-wave solutions of plane Couette and channel flows. The solutions exhibit concentrated regions of vorticity that are centred over low-speed streaks and flanked on either side by high-speed streaks. For several travelling-wave solutions of channel flow, the vortex structures are concentrated near the walls and form particularly isolated and elemental versions of coherent structures in the near-wall region of shear flows. One travelling wave appears to be the invariant solution corresponding to a near-wall coherent structure educed from simulation data by Jeong et al. (J. Fluid Mech., vol. 332, 1997, pp. 185–214) and analysed in terms of transient growth modes of streaky flow by Schoppa & Hussain (J. Fluid Mech., vol. 453, 2002, pp. 57–108). The solutions are constructed by a variety of methods: application of windowing functions to previously known spatially periodic solutions, continuation from plane Couette to channel flow conditions, and from initial guesses obtained from turbulent simulation data. We show how the symmetries of localized solutions derive from the symmetries of their periodic counterparts, analyse the exponential decay of their tails, examine the scale separation and scaling of their streamwise Fourier modes, and show that they develop critical layers for large Reynolds numbers.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of turbulent boundary layer. J. Fluid Mech. 192, 115173.CrossRefGoogle Scholar
Avila, K., Moxey, D., de Lozar, A., Avila, M. & Barkley, D. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.Google Scholar
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turlence in pipe flow. Phys. Rev. Lett. 110, 224502.Google Scholar
Barkley, D. & Tuckerman, L. S. 2005 Computational study of turbulent laminar patterns in Couette Flow. Phys. Rev. Lett. 94, 014502.Google Scholar
Burke, J. & Knobloch, E. 2007 Homoclinic snaking: structure and stability. Chaos 17 (3), 037102.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 2006 Spectral Methods: Fundamentals in Single Domains. Springer.Google Scholar
Chandler, G. J. & Kerswell, R. R. 2013 Simple invariant solutions embedded in 2D Kolmogorov turbulence. J. Fluid Mech. 722, 554595.Google Scholar
Cherubini, S., Palma, P. De., Robinet, J.-Ch. & Bottaro, A. 2011 Edge states in a boundary layer. Phys. Fluids 23, 051705.Google Scholar
Clever, R. M. & Busse, F. H. 1992 Three-dimensional convection in a horizontal layer subjected to constant shear. J. Fluid Mech. 234, 511527.Google Scholar
Cvitanović, P. & Gibson, J. F. 2010 Geometry of turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. T 142, 014007.Google Scholar
Daviaud, F., Hegseth, J. & Berge, P. 1992 Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett. 69, 25112514.CrossRefGoogle ScholarPubMed
Deguchi, K., Hall, P. & Walton, A. 2013 The emergence of localized vortex-wave interaction states in plane Couette flow. J. Fluid Mech. 721, 5885.Google Scholar
Dennis, J. E. & Schnabel, R. B. 1996 Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM.CrossRefGoogle Scholar
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.Google Scholar
Duguet, Y., Schlatter, P. & Henningson, D. 2009 Localized edge states in plane Couette flow. Phys. Fluids 21, 111701.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.Google Scholar
Gibson, J. F.2013 Channelflow: a spectral Navier–Stokes simulator in C${+}{+}$. Tech. Rep. Univ. New Hampshire, www.channelflow.org.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 124.CrossRefGoogle Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.Google Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 15941598.Google Scholar
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.Google Scholar
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.Google Scholar
Hoyle, R. 2006 Pattern Formation: An Introduction to Methods. Cambridge University Press.Google Scholar
Itano, T. & Generalis, S. C. 2009 Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett. 102, 114501.Google Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 701714.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.Google Scholar
Jiménez, J., Kawahara, G., Simens, M., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and bursting solutions. Phys. Fluids 17, 015105.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Kawahara, G. 2005 Laminarization of minimal plane Couette flow: going beyond the basin of attraction of turbulence. Phys. Fluids 17, 041702.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130.Google Scholar
de Lozar, A., Mellibovsky, D., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.Google Scholar
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.Google Scholar
Nagata, M. 1997 Three-dimensional travelling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.Google Scholar
Okino, S., Nagata, M., Wedin, H. & Bottaro, A. 2010 A new nonlinear vortex state in square-duct flow. J. Fluid Mech. 657, 413429.Google Scholar
Peyret, R. 2002 Spectral Methods for Incompressible Flows. Springer.Google Scholar
Pringle, C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. A 367 (1888), 457472.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.Google Scholar
Saiki, E. M., Biringen, S., Danablasoglu, G. & Streett, C. L. 1993 Spatial simulation of secondary instability in plane channel flow: comparison of $k$- and $h$-type disturbances. J. Fluid Mech. 253, 485507.Google Scholar
Schmiegel, A.1999 Transition to turbulence in linearly stable shear flows. PhD thesis, Philipps-Universität Marburg, available on archiv.ub.uni-marburg.de/diss/z2000/0062.Google Scholar
Schneider, T. M., Gibson, J. F. & Burke, J. 2010a Snakes and ladders: Localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.Google Scholar
Schneider, T. M., Gibson, J. F., Lagha, M., Lillo, F. De & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.Google Scholar
Schneider, T. M., Marinc, D. & Eckhardt, B. 2010b Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.Google Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.Google Scholar
Stanislas, M., Perret, L. & Foucaut, J.-M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.Google Scholar
Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.Google Scholar
Uhlmann, M., Kawahara, G. & Pinelli, A. 2010 Travelling-waves consistent with turbulence-driven secondary flow in a square duct. Phys. Fluids 22, 084102.Google Scholar
van Veen, L. & Kawahara, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett. 107, 114501.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.Google Scholar
Viswanath, D. 2009 The critical layer in pipe flow at high Reynolds number. Phil. Trans. R. Soc. Lond. A 367, 561576.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.Google Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.Google Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.Google Scholar
Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98 (20), 204501.Google Scholar
Wedin, H., Bottaro, A. & Nagata, M. 2009 Three-dimensional travelling waves in a square duct. Phys. Rev. E 79, 065305.Google Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 331371.CrossRefGoogle Scholar
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.Google Scholar
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar