Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T09:53:10.122Z Has data issue: false hasContentIssue false

The spacing, position and strength of vortices in the wake of slender cylindrical bodies at large incidence

Published online by Cambridge University Press:  29 March 2006

K. D. Thomson
Affiliation:
Weapons Research Establishment, Salisbury, South Australia
D. F. Morrison
Affiliation:
Weapons Research Establishment, Salisbury, South Australia

Abstract

Extensive schlieren studies and yawmeter traverses of the wake behind slender cone-cylinders at large angles of incidence have shown that the flow pattern is generally steady. Under certain flow conditions, however, the wake exhibits an instability which is not understood. For cross-flow Reynolds numbers in the subcritical region the wake can be described in terms of a cross-flow Strouhal number which has a constant value of 0·2 for cross-flow Mach number components (Mc) up to 0·7 and then increases steadily to a value of 0·6 at Mc = 1·6. The strength of the wake vortices varies substantially with Mc, increasing to a maximum at Mc ≈ 0·7 and then decreasing rapidly for higher values of Mc. Schlieren photographs of the wake have been analysed by means of the impulse flow analogy and also by considering the vortices to be part of a yawed infinite vortex street. The impulse flow analogy is shown to be of use in determining the cross-flow Strouhal number but estimates of vortex strength are too high. The Kármán vortex street theory combined with the sweepback principle leads to reliable estimates of vortex strength up to Mc = 1·0.

Information is given on the spacing, path and strength of the vortices shed from the body for flow conditions varying from incompressible speeds up to Mc = 1·0. Finally this information is used to determine the vortex drag of a two-dimensional circular cylinder below Mc = 1·0.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F. H. & Kronauer, R. E. 1962 J. Fluid Mech. 13, 1.
Allen, H. J. & Perkins, E. W. 1951 N.A.C.A. Rep. 1048.
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities, p. 284. Academic.
Bursnall, W. S. & Loftin, L. K. 1951 N.A.C.A. Tech. Note, 2463.
Durand, W. F.(ed.)1935 Aerodynamic Theory, vol. 2, E, vii, 342-349. Berlin: Springer.
Fage, A. & Johansen, F. C. 1927 Proc. Roy. Soc. A 116, 170.
Fiechter, M. 1966 Deutsch-Französisches Forschungsinstitut Saint Louis, Rep. 10/66.
Fung, Y. C. 1960 J. Aerospace Sci. 27, 801.
Gaster, M. 1969 J. Fluid Mech. 38, 565.
Goldstein, S.(ed.)1950 Modern Developments in Fluid Dynamics, p. 422. Oxford University Press.
Gowen, F. E. & Perkins, E. W. 1953 N.A.C.A. Tech. Note, 2960.
Griss, R. J. 1967 Australian A.R.L. Aerodynamic Tech. Memo. 230.
Hall, I. M., Rogers, E. W. E. & Davis, B. M. 1959 Aero. Res. Coun. R. & M. 3128.
Humphreys, J. S. 1960 J. Fluid Mech. 9, 603.
Jorgensen, L. H. & Perkins, E. W. 1958 N.A.C.A. Rep. 1371.
Knowler, A. E. & Pruden, F. W. 1944 Aero. Res. Coun. R. & M. 1933.
Lindsey, W. F. 1938 N.A.C.A. Rep. 619.
Maltby, R. L. & Peckham, D. H. 1956 R.A.E. Tech. Note Aero. 2482.
Mello, J. F. 1959 J. Aerospace Sci. 26, 155.
Morkovin, M. V. 1964 Symposium on fully separated flows. A.S.M.E. 102.Google Scholar
Naumann, A., Morsbach, M. & Kramer, C. 1966 Separated flows. Agard C.P. no. 4, 539.Google Scholar
Sarpkaya, T. 1966 A.I.A.A. J. 4, 414.
Schlichting, H. 1968 Boundary Layer Theory, 6th edn. pp. 238240. McGraw-Hill.
Thomson, K. D. 1970 Aeronaut. J. Roy. Aero. Soc. 74, 762.
Thomson, K. D. & Morrison, D. F. 1965 Australian W.R.E. Tech. Note, HSA 106.
Thomson, K. D. & Morrison, D. F. 1969 Australian W.R.E. Rep. HSA 25.
Welsh, C. J. 1953 N.A.C.A. Tech. Note, 2941.
Wille, R. 1966 Progress in Aeronautical Sciences, vol. 7, p. 195. Pergamon.