Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T04:33:14.718Z Has data issue: false hasContentIssue false

Some developments in the theory of turbulence

Published online by Cambridge University Press:  20 April 2006

H. K. Moffatt
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge

Abstract

This is in no way intended as a review of turbulence-the subject is far too big for adequate treatment within a reasonably finite number of pages; the monumental treatise of Monin & Yaglom (1971, 1975) bears witness to this statement. It is rather a discourse on those aspects of the problem of turbulence with which I have myself had contact over the last twenty years or so. My choice of topics therefore has a very personal bias - but that is perhaps consistent with the style and objectives of this rather unusual issue of JFM.

I have approached the dynamical problem of turbulence via two simpler (but nevertheless far from trivial) problems – viz the convection and diffusion of a passive scalar field and of a passive vector field by turbulence of known statistical properties. Particular emphasis is given to the method of successive averaging (a simplified version of the renormalization-group technique) which seems to me to have considerable potential. The difficulty of extending this method to the dynamical problem is discussed.

In a final section (§ 6) I have allowed myself the luxury of discussing a somewhat esoteric topic - the problem of inviscid invariants and their relationship with the topological structure of a complex vorticity field. The helicity invariant is the prototype; it is identifiable with the Hopf invariant (1931) and it may be obtained from appropriate manipulation of Noether's theorem (Moreau 1977). A suggestion is made concerning possible measurement of this fundamental measure of ‘lack of reflexional symmetry’ in a turbulent flow.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Moreau, R., Sulem, P.-L. & Frisch, U. 1979 Influence of an external magnetic field on homogeneous MHD turbulence. J. de Mécanique 18, 277.Google Scholar
André, J. D. & Lesieur, M. 1977 Evolution of high Reynolds number isotropic three-dimensional turbulence; influence of helicity. J. Fluid Mech. 81, 187.Google Scholar
Batchelor, G. K. 1950 On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. A 201, 405.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1959 Small scale variation of convected quantities like temperature in turbulent fluid, I. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113.Google Scholar
Batchelor, G. K. & Proudman, I. 1956 The large-scale structure of homogeneous turbulence. Phil. Trans. Roy. Soc. A 248, 369.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1956 Turbulent diffusion. In Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), p. 352. Cambridge University Press.
Brissaud, A., Frisch, U., Léorat, J., Mazure, A., Pouquet, A., Sadourny, R. & Sulem, P. L. 1973 Catastrophe énergétique et nature de la turbulence. Ann. Geophys. 29, 539.Google Scholar
Britter, R. E., Hunt, J. C. R. & Mumford, J. C. 1979 The distortion of turbulence by a circular cylinder. J. Fluid Mech. 92, 269.Google Scholar
Clugreanu, G. 1959 L'Integrale de Gauss et l'Analyse des nœuds tridimensionelles. Rev. Math. Pures Appl. 4, 5.Google Scholar
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics. Interscience.
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453.Google Scholar
Deissler, R. G. 1961 Effects of inhomogeneity and of shear flow in weak turbulent fields. Phys. Fluids 4, 1187.Google Scholar
Edwards, S. F. 1964 The statistical dynamics of homogeneous turbulence. J. Fluid Mech. 18, 239.Google Scholar
Edwards, S. F. 1967 Statistical mechanics with topological constraints: I. Proc. Phys. Soc. 91, 513.Google Scholar
Edwards, S. F. 1967 Statistical mechanics with topological constraints: II. J. Phys. A (Proc. Phys. Soc.) ser. 2, 1, 15.Google Scholar
Elsasser, W. M. 1946 Induction effects in terrestrial magnetism, I. Theory. Phys. Rev. 69, 106.Google Scholar
Fermigier, M. 1980 Mésures sur les écoulements laminaires et turbulents par marquage optique. Thèse du 3me cycle, Université Paris VI.
Forster, D., Nelson, D. R. & Stephen, M. J. 1977 Large distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732.Google Scholar
Fournier, J. D. 1977 Quelques méthodes systématiques de développement en turbulence homogène. Thèse de 3ème cycle, Université de Nice.
Frisch, U., Pouquet, A., Léorat, J. & Mázure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769.Google Scholar
Frisch, U., Sulem, P.-L. & Nelkin, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719.Google Scholar
Grant, H. L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4, 149.Google Scholar
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241.Google Scholar
Gurvich, A. S. 1960 Experimental investigation of frequency spectra of the vertical wind velocity in the atmospheric surface layer. Dokl. Akad. Nauk S.S.S.R. 132, 806.Google Scholar
Heisenberg, W. 1948 On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. A 195, 402.Google Scholar
Hopf, H. 1931 Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Annalen 104, 637.Google Scholar
Howells, I. D. 1960 An approximate equation for the spectrum of a conserved scalar quantity in a turbulent fluid. J. Fluid Mech. 9, 104.Google Scholar
Hunt, J. R. C. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61, 625.Google Scholar
Hunt, J. C. R. 1978 A review of the theory of rapidly distorted turbulent flows and its applications. Fluid Dynamics Trans. 9, 121.Google Scholar
Hunt, J. C. R. & Graham, J. M. R. 1977 Free-stream turbulence near plane boundaries. J. Fluid Mech. 84, 209.Google Scholar
Ibbetson, A. & Tritton, D. J. 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68, 639.Google Scholar
Kelvin, Lord (then W. Thomson) 1868 Trans. Roy. Soc. Edin. 25, 217.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk S.S.S.R. 30, 299.Google Scholar
Kolmogorov, A. N. 1949 On the disintegration of drops in turbulent flow. Dokl. Akad. Nauk S.S.S.R. 66, 825.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497.Google Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575.Google Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745.Google Scholar
Kraichnan, R. H. 1976a Diffusion of weak magnetic fields by isotropic turbulence. J. Fluid Mech. 75, 657.Google Scholar
Kraichnan, R. H. 1976b Diffusion of passive-scalar and magnetic fields by helical turbulence. J. Fluid Mech. 77, 753.Google Scholar
Kraichnan, R. H. 1977 Eulerian and Lagrangian renormalization in turbulence theory. J. Fluid Mech. 83, 349.Google Scholar
Kraichnan, R. H. 1978 Negative diffusivity. Woods Hole Oceanographic Inst. Tech. Rep. WHO I-78-67, 136.
Krause, F. & Raudler, K.-H. 1981 Mean Field Magnetohydrodynamics and Dynamo Theory. Pergamon.
Kuznetsov, E. A. & Mikhailov, A. V. 1980 On topological meaning of canonical Clebsch variables. Phys. Lett. 77A, 37.Google Scholar
Landahl, M. T. 1967 A wave-guide model for turbulent shear flow. J. Fluid Mech. 29, 441.Google Scholar
Mandelbrot, B. B. 1974 Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331.Google Scholar
Mandelbrot, B. B. 1975 On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72, 401.Google Scholar
Moffatt, H. K. 1967a The interaction of turbulence with strong wind shear. In Atmospheric Turbulence and Radio Wave Propagation (ed. A. M. Yaglom & V. I. Tatarski), p. 139. Moscow: Nauka.
Moffatt, H. K. 1967b On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117.Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. I. Massachusetts Institute of Technology Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. II. Massachusetts Institute of Technology Press.
Moreau, J. J. 1961 Constantes d'un îlot tourbillonnaire en fluid parfait barotrope. C. R. Akad. Sci. Paris 252, 2810.Google Scholar
Moreau, J. J. 1977 Sur les intégrales premières de la dynamique d'un fluid parfait barotrope et le théorème de Helmholtz-Kelvin. Séminaire d'Analyse Convexe, Montpellier, Exposé no. 7.
Nelkin, M. 1974 Turbulence, critical phenomena and intermittency. Phys. Rev. A 9, 388.Google Scholar
Nelkin, M. 1975 Scaling theory of hydrodynamic turbulence. Phys. Rev. A 11, 1737.Google Scholar
Novikov, E. A. 1961 Energy spectrum of turbulent flow of an incompressible fluid. Dokl. Akad. Nauk S.S.S.R. 139, 331.Google Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77.Google Scholar
Parker, E. N. 1971 The generation of magnetic fields in astrophysical bodies. III. Turbulent diffusion of fields and efficient dynamos. Astrophys. J. 163, 279.Google Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields. Clarendon.
Patterson, G. S. & Corrsin, S. 1966 Computer experiments on a random walk with both Eulerian and Lagrangian statistics. In Dynamics of Fluids and Plasmas (ed. S. I. Pai et al.), p. 275. Academic.
Pearson, J. R. A. 1959 The effect of uniform distortion on weak homogeneous turbulence. J. Fluid Mech. 5, 274.Google Scholar
Phythian, R. & Curtis, W. D. 1978 The effective long-time diffusivity for a passive scalar in a Gaussian model fluid flow. J. Fluid Mech. 89, 241.Google Scholar
Pouquet, A., Fournier, J. D. & Sulem, P.-L. 1978 Is helicity relevant for large scale steady state three-dimensional turbulence? J. Physique Lettres 39, 199.Google Scholar
Pouquet, A., Frisch, U. & Leaorat, J. 1976 Strong MHD turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321.Google Scholar
Pouquet, A. & Patterson, G. S. 1978 Numerical simulation of helical magnetohydrodynamic turbulence. J. Fluid Mech. 85, 305.Google Scholar
Roberts, P. H. & Stix, M. 1971 The turbulent dynamo: a translation of a series of papers by F. Krause, K.-H. Rädler & M. Steenbeck. NCAR, Boulder, Colorado, Tech. Note 60.
Rose, H. A. 1977 Eddy diffusivity, eddy noise and subgridscale modelling. J. Fluid Mech. 81, 719.Google Scholar
Rose, H. A. & Sulem, P. L. 1978 Fully developed turbulence and statistical mechanics. J. de Phys. 39, 441.Google Scholar
Saffman, P. G. 1960 On the effect of molecular diffusivity in turbulent diffusion. J. Fluid Mech. 8, 273.Google Scholar
Saffman, P. G. 1962 Some aspects of the effects of the molecular diffusivity in turbulent diffusion. In Mécanique de la Turbulence. Ed. du CNRS, no. 108. Paris
Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581.Google Scholar
Siggia, E. D. & Patterson, G. S. 1978 Intermittency effects in a numerical simulation of stationary three-dimensional turbulence. J. Fluid Mech. 86, 567.Google Scholar
Scheffer, V. 1976 Turbulence and Hausdorff dimension. In Turbulence and Navier-Stokes Equation. Lecture Notes in Mathematics, no. 565 (ed. A. Dold & B. Eckmann). Springer.
Snyder, W. H. & Lumley, J. L. 1971 Some measurements of particle velocity autocorrelation functions in turbulent flow. J. Fluid Mech. 48, 41.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 A calculation of mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Z. Naturforsch. 21a, 369.
Steenbeck, M. & Krause, F. 1966 The generation of stellar and planetary magnetic fields by turbulent dynamo action. Z. Naturforsch. 21a, 1285.Google Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. A 20, 196.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Parts 1-4. Proc. Roy. Soc. A 151, 421.Google Scholar
Townsend, A. A. 1951 On the fine-scale structure of turbulence. Proc. Roy. Soc. A 208, 534.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1970 Entrainment and the structure of turbulent flow. J. Fluid Mech. 41, 13.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Vologodskii, A. V., Lukashin, A. V., Frank-Kamentskii, M. D. & Anshelevich, V. V. 1974 The knot problem in statistical mechanics of polymer chains. Sov. Phys. J. Exp. Theor. Phys. 39, 1059.Google Scholar
Whitehead, J. H. C. 1947 An expression of Hopf's invariant in an integral. Proc. Nat. Acacad. Sci. USA 33, 117.Google Scholar
Woltjer, L. 1956 Astrophysical evidence for strong magnetic fields. Ann. New York Acad. Sci. 257, 76.Google Scholar