Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:35:20.234Z Has data issue: false hasContentIssue false

Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

Published online by Cambridge University Press:  06 April 2016

O. Liot
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
F. Seychelles
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
F. Zonta
Affiliation:
Dip. Ing. Elettrica, Gestionale e Meccanica, Via delle scienze 208, 33100 Udine, Italy
S. Chibbaro
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
T. Coudarchet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
Y. Gasteuil
Affiliation:
smartINST, 213 rue de Gerland, 69007 Lyon, France
J.-F. Pinton
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
J. Salort
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
F. Chillà*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon CEDEX 7, France
*
Email address for correspondence: [email protected]

Abstract

We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally buoyant instrumented particle (Shew et al., Rev. Sci. Instrum., vol. 78, 2007, 065105) that was used by Gasteuil et al. (Phys. Rev. Lett., vol. 99, 2007, 234302) to performed experiments in a parallelepipedic Rayleigh–Bénard cell. The temperature signal is obtained from a radiofrequency transmitter. Simultaneously, we determine a particle’s position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well-converged temperature and velocity statistics, as well as pseudo-Eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of direct numerical simulations and Lagrangian tracking of massless tracers. The comparison between experimental and numerical results shows the accuracy and reliability of our experimental measurements and points also out the finite-size effects of the particle. Finally, the analysis of Lagrangian velocity and temperature frequency spectra is shown and discussed. In particular, we observe that temperature spectra exhibit an anomalous $f^{-2.5}$ frequency scaling, likely representing the ubiquitous passive and active scalar behaviour of temperature.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belmonte, A., Tilgner, A. & Libchaber, A. 1994 Temperature and velocity boundary layers in turbulent convection. Phys. Rev. E 50 (1), 279.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93 (6), 064502.CrossRefGoogle ScholarPubMed
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2009 Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79 (6), 065301.Google Scholar
Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64 (12), 22262229.Google Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.Google Scholar
Chevillard, L., Roux, S. G., Lévêque, E., Mordant, N., Pinton, J.-F. & Arnéodo, A. 2003 Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91 (21), 214502.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (58), 125.Google Scholar
Ching, E. S. C., Guo, H., Shang, X.-D., Tong, P. & Xia, K.-Q. 2004 Extraction of plumes in turbulent thermal convection. Phys. Rev. Lett. 93 (12), 124501.Google Scholar
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29 (1), S013S022.Google Scholar
Gasteuil, Shew, W. L., Gibert, M., Chillà, F., Castaing, B. & Pinton, J.-F. 2007 Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh–Bénard convection. Phys. Rev. Lett. 99 (23), 234302.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: an unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kunnen, R. P. J., Clerx, H. J. H., Geurts, B. J., Bokhoven, L. J. A., van Akkermans, R. A. D. & Verzicco, R. 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.Google Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexender, J. & Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Annu. Rev. Fluid Mech. 409, 10171019.Google Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23 (2), 025101.Google Scholar
Machicoane, N. & Volk, R.2016 Lagrangian velocity correlations and spectra of large particles in inhomogeneous and anisotropic turbulence, Phys. Fluids (submitted).Google Scholar
Machicoane, N., Zimmermann, R., Fiabane, L., Bourgoin, M., Pinton, J.-F. & Volk, R. 2015 Large sphere motion in a nonhomogeneous turbulent flow. New J. Phys. 16 (1), 013053.Google Scholar
Monin, A. S. & Yaglom, A. M. 2007 Statistical Fluid Mechanics: Mechanics of Turbulence. Dover.Google Scholar
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.Google Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2012 Lagrangian acceleration measurements in convective thermal turbulence. J. Fluid Mech. 692, 395419.Google Scholar
Obukhov, A. M. 1959 The influence of hydrostatic forces on the structure of the temperature field in turbulent flow. Dokl. Acad. Sci. USSR 125, 12461248; (English translation).Google Scholar
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 Small-scale anisotropy in Lagrangian turbulence. New J. Phys. 8 (6), 102.Google Scholar
Qiu, X.-L., Yao, S.-H & Tong, P. 2000 Large-scale coherent rotation and oscillation in turbulent thermal convection. Phys. Rev. E 61 (6), R6075.Google Scholar
Qureshi, N. M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y. & Bourgoin, M. 2008 Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B 66 (4), 531536.CrossRefGoogle Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007a Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.Google Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007b Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.Google Scholar
Salort, J., Liot, O., Rusaoen, É., Seychelles, F., Tisserand, J.-C., Creyssels, M., Castaing, B. & Chillà, F. 2014 Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys. Fluids 26, 015112.CrossRefGoogle Scholar
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3 (6), 15771586.Google Scholar
Scagliarini, A., Gylfason, Á. & Toschi, F. 2014 Heat-flux scaling in turbulent Rayleigh–Bénard convection with an imposed longitudinal wind. Phys. Rev. E 89 (4), 043012.Google Scholar
Schumacher, J. 2008 Lagrangian dispersion and heat transport in convective turbulence. Phys. Rev. Lett. 100, 134502.Google Scholar
Schumacher, J. 2009 Lagrangian studies in convective turbulence. Phys. Rev. E 79, 056301.Google Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measured local heat transport in turbulent Rayleigh–Bénard convetion. Phys. Rev. E 70, 026308.Google Scholar
Shew, W. L., Gasteuil, Y., Gibert, M., Metz, P. & Pinton, J.-F. 2007 Instrumented tracer for Lagrangian measurements in Rayleigh–Bénard convection. Rev. Sci. Instrum. 78, 065105.Google Scholar
Stevens, R., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.Google Scholar
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.Google Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47, R2253R2256.Google Scholar
Tisserand, J.-C., Creyssels, M., Gasteuil, Y., Pabiou, H., Gibert, M., Castaing, B. & Chillà, F. 2011 Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys. Fluids 23 (1), 015105.Google Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.Google Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexender, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.Google Scholar
Xia, K.-G., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 66, 066303.Google Scholar
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows. Physica D 237 (14), 20952100.CrossRefGoogle Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142.Google Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experiment investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.Google Scholar
Zonta, F., Onorato, M. & Soldati, A. 2012 Turbulence and internal waves in stably-stratified channel flow with temperature-dependent fluid properties. J. Fluid Mech. 697, 175203.Google Scholar
Zonta, F. & Soldati, A. 2014 Effect of temperature dependent fluid properties on heat transfer in turbulent mixed convection. J. Heat Transfer 136 (2), 022501.Google Scholar