Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:08:47.095Z Has data issue: false hasContentIssue false

A simple dynamical model of intermittent fully developed turbulence

Published online by Cambridge University Press:  12 April 2006

Uriel Frisch
Affiliation:
CNRS, Observatoire de Nice, France
Pierre-Louis Sulem
Affiliation:
CNRS, Observatoire de Nice, France
Mark Nelkin
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853

Abstract

We present a phenomenological model of intermittency called the β-model and related to the Novikov-Stewart (1964) model. The key assumption is that in scales ∼ l02n only a fraction βn of the total space has an appreciable excitation. The model, the idea of which owes much to Kraichnan (1972, 1974), is dynamical in the sense that we work entirely with inertial-range quantities such as velocity amplitudes, eddy turn-over times and energy transfer. This gives more physical insight than the traditional approach based on probabilistic models of the dissipation.

The β-model leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1974, 1976) ‘fractal dimension’. For three-dimensional turbulence, the correction B to the $\frac{5}{3}$ exponent of the energy spectrum is equal to $\frac{1}{3}(3 - D)$ and is related to the exponent μ of the dissipation correlation function by $B = \frac{1}{3}\mu $ (0.17 for the currently accepted value). This is a borderline case of the Mandelbrot inequality $B \leqslant \frac{1}{3}\mu $. It is shown in the appendix that this inequality may be derived from the Navier-Stokes equation under the strong, but plausible, assumption that the inertial-range scaling laws for second- and fourth-order moments have the same viscous cut-off.

The predictions of the β-model for the spectrum and for higher-order statistics are in agreement with recent conjectures based on analogies with critical phenomena (Nelkin 1975) but generally diasgree with the 1962 Kolmogorov lognormal model. However, the sixth-order structure function 〈δv6(l)〉 and the dissipation correlation function 〈ε(r)ε(r + 1)〉 are related by \[ \langle \delta v^6(l)\rangle /l^2\sim\langle \epsilon({\bf r})\epsilon({\bf r}+{\bf l})\rangle \] in both models. We conjecture that this relation is model independent.

Finally, some possible directions for further numerical and experimental work on intermittency are indicated.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1953 Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1969 Phys. Fluids Suppl. 12, II, 233.
Batchelor, G. K. & Townsend, A. A. 1949 Proc. Roy. Soc. A 199, 238.
Bell, T. L. & Nelkin, M. 1977 Phys. Fluids 20, 345.
Corrsin, S. 1962 Phys. Fluids 5, 1301.
Corrsin, S. & Kistler, A. L. 1954 N.A.C.A. Tech. Note no. 1242.
Forster, D., Nelson, D. & Stephen, M. 1976 Phys. Rev. Lett. 36, 867.
Forster, D., Nelson, D. & Stephen, M. 1977 Phys. Rev. A 16, 732.
Frisch, U., Lesieur, M. & Sulem, P. L. 1976 Phys. Rev. Lett. 37, 895.
Gibson, C. H., Stegen, G. R. & Mcconnell, S. 1970 Phys. Fluids 13, 2448.
Johnson, D. H. 1975 Cornell Univ. Materials Sci. Center Rep. no. 2458.
Kahane, J. P. 1976 In Turbulence and Navier–Stokes Equation (ed. R. Temam). Lecture Notes in Math. vol. 565, p. 94. Springer.
Kolmogorov, A. N. 1941 C. R. Acad. Sci. USSR 30, 301, 538.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kraichnan, R. 1967 Phys. Fluids 10, 1417.
Kraichnan, R. 1971 J. Fluid Mech. 47, 525.
Kraichnan, R. 1972 In Statistical Mechanics: New Concepts, New Problems, New Applications (ed. S. A. Rice, K. F. Freed & J. C. Light), p. 201. University of Chicago.
Kraichnan, R. H. 1974 J. Fluid Mech. 62, 305.
Kraichnan, R. H. 1975 J. Fluid Mech. 67, 155.
Kuo, A. Y. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 126. Addison-Wesley.
Léorat, J. 1975 thesis, Observatoire de Meudon, France.
Ma, S. 1976 Modern Theory of Critical Phenomena. Frontiers in Physics. Benjamin.
Mandelbrot, B. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 333351. Springer.
Mandelbrot, B. 1974 J. Fluid Mech. 62, 331.
Mandelbrot, B. 1975 Les Objets Fractals: Forme, Hasard et Dimension. Paris: Flammarion (revised English edition: Fractals: Form, Chance and Dimension. San Fransisco: W. H. Freeman, 1977).
Mandelbrot, B. 1976 In Turbulence and Navier–Stokes equation (ed. R. Temam). Lecture Notes in Math. vol. 565, p. 121. Springer.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. M.I.T. Press.
Nakano, T. 1976 Intermittency in the inertial region of turbulence. Preprint.
Nelkin, M. 1973 Phys. Rev. Lett. 30, 1029.
Nelkin, M. 1974 Phys. Rev. A9, 388.
Nelkin, M. 1975 Phys. Rev. A11, 1737.
Nelkin, M. & Bell, T. L. 1978 Phys. Rev. A17, 363.
Novikov, E. A. 1971 Prikl. Math. Mech. 35, 266.
Novikov, E. A. & Stewart, R. W. 1964 Isv. Akad. Nauk USSR, Ser. Geophys. no. 3, p. 408.
Oboukhov, A. M. 1962 J. Fluid Mech. 13, 77.
Onsager, L. 1949 Nuovo Cimento Suppl. 6, 279.
Orszag, S. A. & Patterson, G. S. 1972 Lecture Notes in Phys. vol. 12, p. 127. Springer.
Orszag, S. 1977 Proc. Les Houches 1973 (ed. R. Balian), p. 235. Gordon & Breach.
Pouquet, A. 1978 J. Fluid Mech. 88, 1.
Pouquet, A., Lesieur, M., ANDRÉ, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Rose, H. A. 1977 J. Fluid Mech. 81, 719.
Rose, H. A. & Sulem, P. L. 1978 J. Phys. (Paris) May 1978.
Saffman, P. 1968 In Topics in Non-linear Physics (ed. N. Zabusky), p. 485. Springer.
Siggia, E. D. 1977 Phys. Rev. A 15, 1730.
Siggia, E. D. 1978 Phys. Rev. A17, 1166.
Sulem, P. L. & Frisch, U. 1975 J. Fluid Mech. 72, 417.
Tennekes, H. 1968 Phys. Fluids 11, 669.
Van Atta, C. W. & Park, J. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 402426. Springer.
Wilson, K. G. & Kogut, J. 1974 Phys. Rep. C 12, 76.
Yaglom, A. M. 1966 Dokl. Akad. Nauk SSSR 166, 4952. (English trans. Sov. Phys. Dokl. 2, 26–29.)