Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T22:28:05.110Z Has data issue: false hasContentIssue false

Short-time asymptotics of hydrodynamic dispersion in porous media

Published online by Cambridge University Press:  17 September 2013

Tyler R. Brosten*
Affiliation:
US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
*
Email address for correspondence: [email protected]

Abstract

We consider convection–diffusion transport of a passive scalar within porous media having a piecewise-smooth and reflecting pore–grain interface. The corresponding short-time expansion of molecular displacement time-correlation functions is determined for the generalized steady convection field. By interpreting the generalized short-time expansion of dispersion dynamics in the context of low-Reynolds-number flow through macroscopically homogeneous porous media, we demonstrate the connection between hydrodynamic permeability and short-time dynamics. The analytical short-time expansion is compared with numerical simulation data for steady low-Reynolds-number flow through a random close-pack array of mono-disperse spheres. The quadratic short-time expansion term of the dispersion coefficient closely predicts the numerical data for a mean displacement of at least 10 % of the sphere diameter for a Péclet number of 54.49.

Type
Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
©2013 Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.Google Scholar
Barton, N. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.CrossRefGoogle Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297, 81133.Google Scholar
Brenner, H. & Edwards, D. A. 1993 Macrotransport Processes. Butterworth-Heinemann.Google Scholar
Brosten, T. R., Vogt, S. J., Codd, S. L., Seymour, J. D. & Maier, R. S. 2012 Preasympototic hydrodynamic dispersion as a quantitative probe of porous media permeability. Phys. Rev. E Rapid Commun. 85, 045301.CrossRefGoogle Scholar
Callaghan, P. T. 2011 Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR. Oxford University Press.CrossRefGoogle Scholar
Camassa, R., Lin, Z. & Mclaughlin, R. M. 2010 The exact evolution of the scalar variance in pipe and channel flow. Commun. Math. Sci. 8, 601626.CrossRefGoogle Scholar
Chatwin, P. C. 1975 On the longitudinal dispersion of passive containment in oscillatory flows in tubes. J. Fluid Mech. 71, 513527.CrossRefGoogle Scholar
Chatwin, P. C. 1977 The initial development of longitudinal dispersion in straight tubes. J. Fluid Mech. 80, 3348.CrossRefGoogle Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.CrossRefGoogle Scholar
Cushman, J. H., Hu, B. X. & Ginn, T. R. 1994 Nonequilibrium statistical mechanics of preasymptotic dispersion. J. Stat. Phys. 75, 859878.CrossRefGoogle Scholar
Dagan, G. 1984 Solute transport in heterogenous porous formations. J. Fluid Mech. 145, 151177.CrossRefGoogle Scholar
Foister, R. T. & Van De Ven, T. G. M. 1980 Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96, 105132.CrossRefGoogle Scholar
Ghadirian, B., Stait-Gardner, T., Castillo, R. & Price, W. S. 2010 Modelling diffusion in restricted systems using the heat kernel expansion. J. Chem. Phys. 132, 234108.CrossRefGoogle ScholarPubMed
Gill, W. N. & Sankarasubramanian, R. 1970 Exact analysis of unsteady convection diffusion. Proc. R. Soc. Lond. A 316, 341350.Google Scholar
Haber, S. & Mauri, R. 1988 Lagrangian approach to time-dependent laminar dispersion in rectangular conduits. Part 1. Two-dimensional flow. J. Fluid Mech. 190, 201215.CrossRefGoogle Scholar
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001a The first effects of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213241.CrossRefGoogle Scholar
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001b Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243278.CrossRefGoogle Scholar
Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.CrossRefGoogle Scholar
Koch, D. L. & Brady, J. F. 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.CrossRefGoogle Scholar
Koponen, A. 1998 Simulations of fluid flow in porous media by Lattice-gas and Lattice–Boltzmann methods. PhD thesis, University of Jyväskylä.Google Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 11911251.CrossRefGoogle Scholar
Latini, M. & Bernoff, A. J. 2001 Transient anomalous diffusion in Poisueille flow. J. Fluid Mech. 441, 399411.CrossRefGoogle Scholar
Lighthill, M. J. 1966 Initial development of diffusion in Poiseuille flow. J. Inst. Maths Applics 2, 97108.CrossRefGoogle Scholar
Maier, R. S., Kroll, D. M., Bernard, R. S., Howington, S. E., Peters, J. F. & Davis, H. T. 2000 Pore-scale simulation of dispersion. Phys. Fluids 12, 20652080.CrossRefGoogle Scholar
Maier, R. S., Kroll, D. M., Kutovsky, Y. E., Davis, H. T. & Bernard, R. S. 1998 Simulation of flow through bead packs using the Lattice–Boltzmann method. Phys. Fluids 10, 6074.CrossRefGoogle Scholar
McAvity, D. M. & Osborn, H. 1991 Asympototic expansion of the heat kernel for generalized boundary conditions. Class. Quan. Grav. 8, 1445.CrossRefGoogle Scholar
Mitra, P. P., Sen, P. N. & Schwartz, L. M. 1993 Short-time behaviour of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47, 85658574.CrossRefGoogle ScholarPubMed
Mitra, P. P., Sen, P. N., Schwartz, L. M. & Doussal, P. L. 1992 Diffusion propogator as a probe of the structure of porous media. Phys. Rev. Lett. 68, 35553558.CrossRefGoogle ScholarPubMed
Mori, H. 1965 A continued-fraction representation of the time-coorelation functions. Prog. Theor. Phys. 34, 399416.CrossRefGoogle Scholar
Phillips, C. G. & Jansons, K. M. 1990 The short-time transient of diffusion outside a conducting body. Proc. R. Soc. Lond. A 428, 431449.Google Scholar
Rugh, W. J. 1981 Nonlinear System Theory. The Johns Hopkins University Press.Google Scholar
Saffman, P. G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6, 321349.CrossRefGoogle Scholar
Saffman, P. G. 1960a Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries. J. Fluid Mech. 7, 194208.CrossRefGoogle Scholar
Saffman, P. G. 1960b On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech. 8, 273283.CrossRefGoogle Scholar
Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 75, 13931543.CrossRefGoogle Scholar
Smith, R. 1981 A delay-diffusion description for contaminant dispersion. J. Fluid Mech. 105, 469486.CrossRefGoogle Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196212.Google Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Townsend, A. A. 1951 The diffusion of heat spots in isotropic turbulence. Proc. R. Soc. Lond. A 209, 418430.Google Scholar
Van Den Broeck, C. 1982 A stochastic description of longitudinal dispresion in uniaxial flows. Physica A 112A, 343352.CrossRefGoogle Scholar
Van Kampen, N. G. 2007 Stochastic Processes in Physics and Chemistry. Elsevier.Google Scholar
Vassilevich, D. V. 2003 Heat kernel expansion: user’s manual. Phys. Rep. 388, 279360.CrossRefGoogle Scholar
Volterra, V. 1959 Theory of Functionals and of Integral and Integro-Differential Equations. Dover.Google Scholar
Weiner, N. 1958 Nonlinear Problems in Random Theory. John Wiley.Google Scholar
Whitaker, S. 1986 Flow in porous media I; a theoretical derivation of Darcy’s law. Trans. Porous Med. 1, 325.CrossRefGoogle Scholar
Young, W. R. & Jones, S. 1991 Shear dispersion. Phys. Fluids A 3, 10871101.CrossRefGoogle Scholar