Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T11:52:34.536Z Has data issue: false hasContentIssue false

Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube

Published online by Cambridge University Press:  21 April 2006

Philip A. Thompson
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12181
Garry C. Carofano
Affiliation:
Benet Weapons Laboratory, Watervliet, NY 12189
Yoon-Gon Kim
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12181

Abstract

The emergence of a shockwave from the open end of a shock tube is studied, with special emphasis on test fluids of high molar heat capacity, i.e. retrograde fluids. A variety of wavelike vapour-liquid phase changes are observed in such fluids, including the liquefaction shock, mixture-evaporation shock, condensation waves associated with shock splitting and liquid-evaporation waves (these phenomena have analogues in the polymorphic phase changes of solids; only the first two are treated in this paper). The open end of the shock-tube test section discharges into an observation chamber where photographs of the emerging flow are taken. Calculations were performed with the Benedict-Webb-Rubin, van der Waals and other equations of state. Numerical (finite-difference) predictions of the flow were made for single-phase and two-phase flows: solutions were tested against the experimental shock diffraction and vortex data of Skews. The phase-change properties of the test fluid can be quantified by the ‘retrogradicity’ r(T), measuring the difference in slope between the P, T isentrope and the vapour-pressure curve, and the ‘kink’ k(T), measuring the difference between the single-phase and mixture sound speeds. Mixture-evaporation (i.e. rarefaction) shocks appear to have a sonic-sonic or double Chapman-Jouguet structure and show agreement with amplitude predictions based on k(T). Liquefaction shocks are found to show a reproducible transition from regular, smooth shock fronts to irregular, chaotic shock fronts with increasing shock Mach number. This transition can be correlated with published stability limits.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon 1973 Thermodynamic properties of benzene. Engineering Sciences Data Unit No. 73009, Institution of Chemical Engineers, London.
Barieau, R. E. 1966 Thermodynamic properties of a van der Waals fluid, particularly near the critical point. Phys. Rev. Lett. 16, 297300.Google Scholar
Barker, L. M. & Hollenbach, R. E. 1970 Shock-wave studies of PMMA, fused silica and sapphire. J. Appl. Phys. 41, 42084226.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, p. 72. Cambridge University Press.
Bethe, H. A. 1942 The theory of shock waves for an arbitrary equation of state. Office of Scientific Research and Development, Washington, Rep. No. 545, p. 57.
Borisov, A. A., Borisov, Al. A. & Kutateladze, S. S. 1983 Rarefaction shock wave near the critical liquid-vapour point. J. Fluid Mech. 126, 5973.Google Scholar
Bursik, J. W. & Hall, R. M. 1981 Generalization of low pressure, gas-liquid, metastable sound speed to high pressures. Sixteenth Thermophysics Conference, Palo Alto, AIAA Paper 81–1063.
Carofano, G. C. 1984 Blast cómputation using Harten's total variation diminishing scheme. U.S. ARDC Tech. Rep. No. ARLCB-TR-84029, Benet Weapons Laboratory, Watervliet, N.Y. 12189.
Chaves, H. 1980. Verdampfungswellen in retrograden Fluessigkeiten. Diplomarbeit, Georg-August-Universitaet, Goettingen.
Chaves, H. 1984 Phasenubergaenge und Wellen bei der Entspannung von Fluiden hoher spezifischer Waerme. Dissertation, Georg-August Universitaet, Goettingen.
Chen, G. 1984 Determination of the sound speed in a two-phase, vapor-liquid mixture induced by a shock wave. M.S. thesis, Rensselaer Polytechnic Institute.
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.Google Scholar
Davidson, L. & Graham, R. A. 1979 Shock compression of solids. Phys. Rep. 55, 255379.Google Scholar
Dettleff, G. 1978 Experimente zum Nachweis der Verflussingungsstosswelle in retrograden Gasen. Doktorarbeit, Georg-August-Universitaet, Goettingen.
Dettleff, G., Meier, G. E. A., Speckmann, H. D., Thompson, P. A. & Yoon, C. 1982 Experiments in shock liquefaction. In Proc. 13th Intl Symp. on Shock Tubes and Waves (ed. C. E. Trainor & J. G. Hall), pp. 716723. State University of New York Press.
Dettleff, G., Thompson, P. A., Meier, G. E. A. & Speckmann, H. D. 1979 An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279304.Google Scholar
Didden, N. 1979 On the formation of vortex rings: rolling up and production of circulation. Z. angew. Math. Phys. 30, 101116.Google Scholar
Ehrfeld, W. 1983 Elements of Flow and Diffusion Processes in Separation Nozzles. Springer.
Elder, F. K. & de Haas, N. 1952 Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23, 10651069.Google Scholar
Fowles, G. R. & Houwing, A. F. P. 1984 Instability of shock and detonation waves. Phys. Fluids 27, 19821990.Google Scholar
Harten, A. 1983 High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49, 357393.Google Scholar
Hayes, W. D. 1958 The basic theory of gasdynamic discontinuities. In Fundamentals of Gasdynamics (ed. H. W. Emmons), pp. 416481. Princeton University Press.
Hobbs, D. E. 1983 A virial equation of state utilizing the principle of corresponding states. Dissertation, Rensselaer Polytechnic Institute.
Jones, D. M., Martin, P. M. E. & Thornhill, C. K. 1959 A note on the pseudo-stationary flow behind a strong shock diffracted or reflected at a corner. Proc. R. Soc. Lond. A 209, 238248.Google Scholar
Knuth, E. L. 1959 Nonstationary phase change involving a condensed phase and a saturated vapor. Phys. Fluids 2, 8486.Google Scholar
Kolsky, H. 1969 Production of tensile shock waves in stretched natural rubber. Nature 224, 1301.Google Scholar
Kontorovich, V. M. 1957 Concerning the stability of shock waves. Sov. Phys: Tech. Phys. 6, 11791181.Google Scholar
Kosky, P. G. 1968 Bubble growth measurements in uniformly superheated liquids. Chem. Engng Sci. 23, 695706.Google Scholar
Lambrakis, K. C. 1972 Negative-fluids. Dissertation, Rensselaer Polytechnic Institute.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 496. Pergamon.
Mcqueen, R. G. & Marsh, S. P. 1968 Hugoniots of graphites of various initial densities and the equation of state of carbon. In Behavior of Dense Media under High Dynamic Pressures, pp. 207216. Gordon and Breach.
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81, 465495.Google Scholar
Meier, G. E. A. & Thompson, P. A. 1985 Real gas dynamics of fluids with high specific heat. In Dynamics of Real Fluids, pp. 103114. Springer.
Morris, D. G. 1980 An investigation of the shock-induced transformation of graphite to diamond. J. Appl. Phys. 51, 20592965.Google Scholar
Payman, W. & Shepherd, W. C. F. 1946 Explosion waves and shock waves, VI. Proc. R. Soc. Lond. A 186, 293321.Google Scholar
Planck, M. 1903 Treatise on Thermodynamics, pp. 150152. Longmans-Green.
Puettendoerfer, E. 1982 Schallnaehe Stroemung eines retrograden Fluides. Diplomarbeit, Georg-August Universitaet. Goettingen.
Reid, R. C., Prausnitz, J. M. & Sherwood, T. K. 1977 The Properties of Gases and Liquids, pp. 199201. McGraw-Hill.
Rizzi, A. 1982 Damped Euler-equation method to compute transonic flow around wing-body combinations. AIAA J. 20, 13211328.Google Scholar
Shepherd, J. E. & Sturtevant, B. 1983 Rapid evaporation at the superheat limit. J. Fluid Mech. 121, 379402.Google Scholar
Skews, B. W. 1967a The shape of a diffracting shock wave. J. Fluid Mech. 29, 297304.Google Scholar
Skews, B. W. 1967b The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705719.Google Scholar
Slemrod, M. 1983 Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rat. Mech. Anal. 81, 301315.Google Scholar
Slemrod, M. 1984 Dynamic phase transitions in a van der Waals fluid. J. Diffl Equat. 52, 123.Google Scholar
Speckmann, H. D. 1984 Aufspaltung von Kondensationsstosswellen in Fluiden hoher spezifischer Waerme. Dissertation, Georg-August Universitaet, Goettingen.
Thompson, P. A. 1972 Compressible-Fluid Dynamics, p. 379. McGraw-Hill.
Thompson, P. A. 1983 Shock-wave series for real fluids. Phys. Fluids 26, 34713474.Google Scholar
Thompson, P. A. & Kim, Y.-G. 1983 Direct observation of shock splitting in a vapor-liquid system. Phys. Fluids 26, 32113215.Google Scholar
Thompson, P. A., Kim, Y.-G. & Meier, G. E. A. 1984 Shock tube studies with incident liquefaction shocks. In Proc. 14th Intl Symp. on Shock Tubes and Waves (ed. R. D. Archer & B. E. Milton), pp. 413420. New South Wales University Press.
Thompson, P. A., Kim, Y.-G. & Meier, G. E. A. 1985 Flow visualization of a shock wave by simple refraction of a background grid. In Optical Methods in Dynamics of Fluids and Solids, pp. 225231. Springer.
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.Google Scholar
Thompson, P. A. & Sullivan, D. A. 1975 On the possibility of complete condensation shock waves in retrograde fluids. J. Fluid Mech. 70, 639650.Google Scholar
Tsonopoulos, C. 1974 An empirical correlation of second virial coefficients. Am Inst. Chem. Engng J. 20, 263272.Google Scholar
Van Der Waals, J. D. 1908 Lehrbuch der Thermodynamik. Bearbeitet von Ph. Kohnstamm, Maas und Van Suchtelen, Leipzig.
Van Dyke, M. 1982 An Album of Fluid Motion, pp. 148, 242. Parabolic.
Wegener, P. P. & Mack, L. M. 1958 Condensation in supersonic and hypersonic wind tunnels. In Advances in Applied Mechanics, vol. 5 (ed. H. L. Dryden & Th. von Kármán), pp. 307447. Academic.
Wegener, P. P. & Wu, B. J. C. 1977 Gasdynamics and homogeneous nucleation. Adv. Colloid Interface Sci. 7, 325417.Google Scholar
Yamada, T. 1973 An improved generalized equation of state. AIChE.J. 19, 286291.Google Scholar
Yarrington, R. M. & Kay, W. B. 1960 Thermodynamic properties of perfluoro-2-butyltetrahydrofuran. J. Chem. Engng Data 5, 2429.Google Scholar
Yee, H. C., Warming, R. F. & Harten, A. 1982 A high resolution numerical technique for inviscid gas-dynamic problems with weak shocks. In Proc. 8th Intl Conf. Numerical Methods in Fluid Dynamics, Aachen, West Germany. Springer.
Yee, H. C., Warming, R. F. & Harten, A. 1983 Implicit total variation diminishing (TVD) schemes for steady-state calculations. NASA Tech. Mem. 84342.
Yoon, C. 1985 Shock liquefaction experiments with retrograde substances. Dissertation, Rennselaer Polytechnic Institute.
Zel'Dovich, Ya. B.1946 On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363364.Google Scholar
Zel'Dovich, Ya. B. & Raizer, Yu. P.1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 2 (ed. W. D. Hayes & R. F. Probstein), pp. 750756. Academic.