Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T09:53:15.690Z Has data issue: false hasContentIssue false

Shock wave structure in gas mixtures with large mass disparity

Published online by Cambridge University Press:  21 April 2006

R. Fernández-Feria
Affiliation:
Mechanical Engineering Department, Yale University, Box 2159 YS New Haven, CT 06520, USA
J. Fernández De La Mora
Affiliation:
Mechanical Engineering Department, Yale University, Box 2159 YS New Haven, CT 06520, USA

Abstract

The structure of normal shock waves is considered when the ratio of molecular masses mp/m of a binary mixture of inert monatomic gases is large and the density ratio ρp/ρ is of order unity or below. Generalized hydrodynamic equations, valid for arbitrary intermolecular potentials, are obtained from a hypersonic closure of the kinetic equation for the heavy gas and a near-equilibrium closure for the light component. Because the Prandtl number of the light gas and the Schmidt number of the mixture are nearly constant, the only independent transport coefficient arising in the model is the viscosity μ of the light gas, which is absorbed into a new independent position variable s. Knowledge of μ as a function of temperature thus determines the shock structure independently from the details of the intermolecular potential, allowing comparison with experiments in the complete absence of free parameters. In terms of the ratio M (frozen Mach number) between the speed of propagation and the sound speed of the light gas in the unperturbed medium, one finds that: (i) When M > 1, the behaviour is similar to that of a ‘dusty gas’, with a broad relaxation layer (outer solution) following a sharp boundary layer through which the speed of the heavy gas is almost constant (a shock within a shock). (ii) When (1 + ρp/ρ)s−½ < M < 1, the boundary layer disappears, yielding a so-called ‘fully dispersed wave’. (iii) Because the internal energy of the heavy gas is negligible, the present problem differs from previous shock studies in that, for the first time, the structure of the relaxation region is obtained algebraically in phase space, thus permitting an exhaustive study of the behaviour. From it, the overshooting solution found by Sherman (1960) is related to the unphysical degenerate branch of the outer solution arising when M > 1, showing a failure of the Chapman–Enskog theory, even for weak shocks, when the heavy gas is dilute. Also, an algebraic explanation arises for the ‘double hump structure’ observed in He–Xe shocks. (iv) When M is nearly unity, the initial boundary layer spreads out, and the structure must be obtained by integration of a numerically unstable system of three differential equations. However, the reduction of order brought about by the weak variation of the light-gas entropy at the head of the shock, results in a stable system of equations that we integrate numerically. Excellent phase-space agreement with recent shock-tube experiments of Tarczynski, Herczynski & Walenta (1986) is found for both weak and strong shocks.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, G. A. 1968 J. Fluid Mech. 31, 657.
Bird, G. A. 1984 Shock wave structure in gas mixtures. In Rarefied Gas Dynamics (ed. H. Oguchi), vol. 1, p. 175. University of Tokyo Press.
Bratos, M. & Herczyński, R. 1980 Bull. Acad. Pol. Sci. 28, 259.
Bratos, M. & Herczyński, R. 1983 The shock wave structure in one-component gas and in binary gas mixtures. Prace IPPT-IFTR reports 19/1983.
Burgers, J. M. 1969 Flow Equations for Composite Gases. Academic.
Carrier, G. F. 1958 J. Fluid Mech. 4, 376.
Center, R. E. 1967 Phys. Fluids 10, 1777.
Cowling, T. G. 1942 Phil. Mag. 33, 61.
Dyakov, S. P. 1954 Zh. Eksp. Theor. Fiz. 27, 728.
FernÁndez De La Mora, J. 1984 J. Phys. Chem. 88, 4557.
FernÁndez De La Mora, J. 1985 J. Chem. Phys. 82, 3453.
FernÁndez De La Mora, J. & Fernández-Feria, R. 1987 Kinetic theory of gas mixtures with large mass disparity. Phys. Fluids 30, 740.Google Scholar
FernÁndez De La Mora, J., Wilson, J. A. & Halpern, B. L. 1984 J. Fluid Mech. 149, 217.
Gmurczyk, A. S., Tarczynski, M. & Walenta, Z. A. 1979 Shock wave structure in the binary mixtures of gases with disparate molecular masses. In Rarefied Gas Dynamics (ed. R. Campargue), vol. 1, pp. 333341. Commissariat à l'Energie Atomique, Paris.
Goldman, E. & Sirovich, L. 1967 Phys. Fluids 10, 1928.
Goldman, E. & Sirovich, L. 1969 J. Fluid Mech. 33, 575.
Hamad, H. & Frohn, A. 1980 Z. angew. Math. Phys. 31, 66.
Harris, W. L. & Bienkowski, G. K. 1970 Asymptotic theory of the structure of normal shock waves in binary gas mixtures. Princeton Univ. Dept Aerospace and Mech. Sci. Rep. no. 985.
Harris, W. L. & Bienkowski, G. K. 1971 Phys. Fluids 14, 2652.
Maise, G. & Fenn, J. B. 1972 Trans ASME C: J. Heat Transfer 94, 29.
Marble, F. E. 1970 Ann. Rev. Fluid Mech. 2, 397.
MillÁn, G. 1975 Problemas matemáticos de la mecánica de fluidos. Estructura de las ondas de choque y Combustion, p. 356. Madrid, Royal Academy of Sciences.
Platkowski, T. 1979 Application of the modified BGK equations to the shock wave structure in disparate mass mixtures. In Rarefied Gas Dynamics (ed. R. Campargue), vol. 1, pp. 323341. Commissariat à l'Energie Atomique, Paris.
Reis, V. H. & Fenn, J. B. 1963 J. Chem. Phys. 39, 3240.
Riesco-Chueca, P., Fernández-Feria, R. & Fernández De La Mora, J. 1986 Nonlinearities in the interspecies transfer of Momentum and Energy for disparate-mass gas mixtures and shock wave structure. In Rarefied Gas Dynamics (ed. V. Boffi & C. Cercignani) Vol. 1, p. 283. Stuttgart: Teubner.
Riesco-Chueca, P., Fernández-Feria, R. & Fernández De La Mora, J. 1987 Phys. Fluids 30, 45.
Schmidt, B., Seiler, F. & Wörner, M. 1984 J. Fluid Mech. 143, 305.
Schwartz, M. H. & Andres, R. P. 1977 Rarefied Gas Dynamics (ed. J. L. Potter), pp. 135149. AIAA Prog. Astronautics Aeronautics, vol. 5.
Sherman, F. S. 1960 J. Fluid Mech. 8, 465.
Sirovich, L. & Goldman, E. 1969 Normal shock structure in a binary gas. In Rarefied Gas Dynamics (ed. L. Trilling & N. Y. Wachmann), vol. 1, pp. 407415. Academic.
Srivastava, R. S. & Rosner, D. E. 1979 Intl J. Heat Mass Transfer 22, 1281.
Srivastava, R. S. & Sharma, J. P. 1982 Z. angew. Math. Phys. 33, 818.
Tarczynski, M., Herczynski & Walenta, Z. A. 1986 Shock Tube Symposium. Stanford (in press).
Thuan, N. K. & Andres, R. P. 1979 11th Symp. on Rarefied Gas Dynamics (ed. R. Campargue), vol. 1, pp. 667682. Commissariat à I'Energie Atomique, Paris.