Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T15:30:04.370Z Has data issue: false hasContentIssue false

The shape of a magnetic liquid drop

Published online by Cambridge University Press:  26 April 2006

O. E. Séro-Guillaume
Affiliation:
Lemta UA CNRS 875, 2 Avenue de la Forêt de Haye, 54504 Vandoeuvre-lès-Nancy Cedex, France
D. Zouaoui
Affiliation:
Lemta UA CNRS 875, 2 Avenue de la Forêt de Haye, 54504 Vandoeuvre-lès-Nancy Cedex, France
D. Bernardin
Affiliation:
Lemta UA CNRS 875, 2 Avenue de la Forêt de Haye, 54504 Vandoeuvre-lès-Nancy Cedex, France
J. P. Brancher
Affiliation:
Lemta UA CNRS 875, 2 Avenue de la Forêt de Haye, 54504 Vandoeuvre-lès-Nancy Cedex, France

Abstract

The electromagnetic forces in a ferrofluid depend on the domain occupied by the fluid. We study here the equilibrium positions of a ferrofluid drop with a boundary which is partially or totally free. The method used is based on the minimization of the energy with respect to the shape of the drop. We show bifurcations of the solutions and hysteresis phenomena when the parameters vary.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bossavit A. 1987 ProbleGmes non-lineAaires appliqueAs. ElectromagneAtisme-MagneAtostatique. Cours INRIA.
Berkovsky, B. M. & Kalikmanov V. I. 1985 Topological instability of magnetic fluids. J. Phys. Lett. 46, 483491.Google Scholar
Blums E. Y., Maiorov, M. M. & Tsebers A. O. 1989 Magnetic Fluids. Inst. of Physics of Latvian Academy of Sciences. (In Russian.)
Brebbia C. A., Telles, J. C. F. & Wrobel L. C. 1984 Boundary Element Techniques. Springer.
Brancher J. P. 1988 Comportement d'un ferrofluide dans un champ tournant et application. J. Mec. TheAor. Appl. 7, 329350.Google Scholar
Brancher, J. P. & SeAro-Guillaume O. 1983 Sur l'eAquilibre des liquides magneAtiques, application aG la magneAtostatique. J. Mec. TheAor. Appl. 2, 265283.Google Scholar
Brancher, J. P. & SeAro-Guillaume O. 1985 Etude de la deAformation d'un liquide magneAtique. Arch. Rat. Mech. Anal. 90, 5785.Google Scholar
Brancher, J. P. & Zouaoui D. 1987 Equilibrium of a magnetic liquid drop. J. Magnetism Magn. Mat. 65, 311314.Google Scholar
De Boor C. 1987 A Practical Guide to Splines. Springer.
Landau, L. & Lifshitz E. 1990 Electrodynamique des Milieux Continus. Moscow: Mir.
Rosensweig R. E. 1985 Ferrohydrodynamics. Cambridge University Press.
SeAro-Guillaume, O. E. & Bernardin D. 1987 Note on a Hamiltonian formalism for the flow of a magnetic fluid with a free surface. J. Fluid Mech. 181, 381386.Google Scholar
SeAro-Guillaume, O. E. & Brancher J. P. 1991 Hamiltonian formulation for shaping problems. Eur. J. Mech B: Fluids 10, 464473.Google Scholar
Sneyd, A. D. & Moffatt H. K. 1982 The fluid dynamics of the process of levitation melting. J. Fluid Mech. 117, 4570.Google Scholar
Zouaoui D. 1991 Equilibre des liquides magneAtiques avec interface libre. Doctoral thesis, Institut National Polytechnique de Lorraine, Nancy.