Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T01:57:16.587Z Has data issue: false hasContentIssue false

Self-excited oscillations and mixing in a heated round jet

Published online by Cambridge University Press:  26 April 2006

Peter A. Monkewitz
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering. University of California, Los Angeles, CA 90024-1597, USA
Dietrich W. Bechert
Affiliation:
DLR, Institut fuer Turbulenzforschung, Mueller-Breslau-Strasse 8, 1000 Berlin 12, West Germany
Bernd Barsikow
Affiliation:
DLR, Institut fuer Turbulenzforschung, Mueller-Breslau-Strasse 8, 1000 Berlin 12, West Germany
Bernhard Lehmann
Affiliation:
DLR, Institut fuer Turbulenzforschung, Mueller-Breslau-Strasse 8, 1000 Berlin 12, West Germany

Abstract

An axisymmetric hot-air jet discharging into cold ambient air is investigated experimentally. We consider the transitional regime, that is, Reynolds numbers at which the jet is initially laminar. In the first part of the paper it is demonstrated by several different experiments that, for sufficiently low Reynolds number and a ratio of jet exit to ambient density below approximately 0.7, global oscillations of the ‘jet column’ become self-excited, a behaviour which is related to local absolute instability in the potential core region. The onset of the global oscillations is identified as a Hopf bifurcation and two axisymmetric global modes are observed below the critical density ratio. Finally, it is shown that in the (self-excited) limit-cycle regime the spreading of the hot jet is intermittently quite spectacular, with half-angles in excess of 45°. Using flow visualization, this large spreading of low-density jets is related to the generation of strong ‘side jets’ emanating from the jet column.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsikow, B. & Lehmann, B. 1988 Orderly structures in a heated circular jet. Award winning video at the “Gallery of Fluid Motion”, 41st Ann. Meeting of the Div. of Fluid Dynamics, Am. Phys. Soc., Buffalo N.Y. Some frames reproduced in Reed, H. L. 1989 Gallery of fluid motion. Phys. Fluids A 1, 1445Google Scholar
Bernal, L. P. & Roshko, A. 1986 Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499.Google Scholar
Bers, A. 1983 Basic Plasma Physics I (ed. A. A. Galeev & R. N. Sudan), p. 451. North-Holland.
Bradbury, L. J. S. & Khadem, A. H. 1975 The distortion of a jet by tabs. J. Fluid Mech. 70, 801.Google Scholar
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1988 Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60, 25.Google Scholar
Corrsin, S. & Uberoi, M. S. 1947 Experiments on the flow and heat transfer in a heated turbulent air jet. NACA TN 1865.Google Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 1791.Google Scholar
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78, 535.Google Scholar
Fiedler, H., Korschelt, D. & Mensing, P. 1978 On transport mechanism and structure of scalar field in a heated plane shear layer. In Structure and Mechanisms of Turbulence II (ed. H. Fiedler). Lectures Notes in Physics, Vol. 76, p. 58. Springer.
Fuchs, V., Ko, K. & Bers, A. 1981 Theory of mode-conversion in weakly inhomogeneous plasma. Phys. Fluids 24, 1251.Google Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473.Google Scholar
Hussain, A. K. M. F. & Hasan, M. A. Z. 1983 The ‘whistler-nozzle’ phenomenon. J. Fluid Mech. 134, 431.Google Scholar
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1978 The free shear layer tone phenomenon and probe interference. J. Fluid Mech. 87, 349.Google Scholar
Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.
Kyle, D. 1988 LIF images of He/N2 jets. Mech. Engng Rep. FM88DK1. Yale University.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Lasheras, J. C. & Choi, H. 1988 Three-dimensional instability of a plane shear layer: an experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 53.Google Scholar
Lehmann, B., Barsikow, B., Monkewitz, P. A., Bechert, D. W. & Eickhoff, H. 1988 Experimentelle Analyse der Instabilitätsformen in Heissgas-Freistrahlen und Freistrahl-flammen (Experimental analysis of the instability modes of hot gas jets and jet flames). Proc. 4th TECFLAM Seminar on Turbulent Combustion, Stuttgart, November 3.
Lepicovski, J., Ahuja, K. K., Brown, W. H., Salikuddin, M. & Morris, P. J. 1988 Acoustically excited heated jets. NASA CR 4129, part I-III.Google Scholar
Michalke, A. 1971 Instabilität eines kompressiblen runden Freistrahls unter Berücksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. 19, 319.Google Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerospace Sci. 21, 159.Google Scholar
Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 999.Google Scholar
Monkewitz, P. A. & Bechert, D. W. 1988 Gallery of fluid motion. Phys. Fluids 31, 2386.Google Scholar
Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1988 Experiments on the absolute instability of heated jets. In Advances in Turbulence II (ed. H.-H Fernholz & H. E. Fiedler), p. 455. Springer.
Monkewitz, P. A., Huerre, P. & Chomaz, J. M. 1987 Preferred modes in jets and global instabilities. Bull. Am. Phys. Soc. 32, 2051.Google Scholar
Monkewitz, P. A., Lehmann, B., Barsikow, B. & Bechert, D. W. 1989 The spreading of self-excited hot jets by side-jets. Phys. Fluids A 1, 446Google Scholar
Monkewitz, P. A. & Sohn, K. D. 1986 Absolute instability in hot jets and their control. AIAA Paper 86–1882.Google Scholar
Monkewitz, P. A. & Sohn, K. D. 1988 Absolute instability in hot jets. AIAA J. 26, 911.Google Scholar
Morkovin, M. V. 1988 Recent insights into instability and transition to turbulence in open flow systems. AIAA paper 88–3675.Google Scholar
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard—von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 1.Google Scholar
Eenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exps. Fluids 7, 309.Google Scholar
Úrt, J. T. 1971 Nonlinear stability theory. Ann. Rev. Fluid Mech. 3, 347.Google Scholar
Subbarao, E. R. 1987 An experimental investigation of the effects of Reynolds number and Richardson number on the structure of a co-flowing buoyant jet. Ph.D. thesis, Stanford University.
Dall, J. 1867 Sound – A Course of Eight Lectures Delivered at the Royal Institution of Great Britain. London: Longmans, Green and Co.
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 35.Google Scholar
Yule, A. J. 1978 Large-scale structure in the mixing layer of a round jet. J. Fluid Mech. 89, 413.Google Scholar