Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:07:28.678Z Has data issue: false hasContentIssue false

Secondary instability and subcritical transition of the leading-edge boundary layer

Published online by Cambridge University Press:  04 March 2016

Michael O. John*
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, Zurich 8092, Switzerland
Dominik Obrist
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, Zurich 8092, Switzerland ARTORG Center, University of Bern, Bern 3010, Switzerland
Leonhard Kleiser
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, Zurich 8092, Switzerland
*
Email address for correspondence: [email protected]

Abstract

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as $Re\approx 175$, i.e. far below the linear critical Reynolds number $Re_{crit}\approx 583$ of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above $Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number $Re_{tr}\approx 250$ at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Arnal, D., Coustols, E. & Juillen, J. C. 1984 Experimental and theoretical study of transition phenomena on an infinite swept wing. Rech. Aerosp. 1984 (4), 275290.Google Scholar
Arnal, D., Juillen, J. C., Reneaux, J. & Gasparian, G. 1997 Effect of wall suction on leading edge contamination. Aerosp. Sci. Technol. 1 (8), 505517.CrossRefGoogle Scholar
Arnal, D., Perraud, J. & Séraudie, A.2009 Attachment line and surface imperfection problems. Tech. Rep. EN-AVT-151. NATO-RTO.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.Google Scholar
Bippes, H. 1989 Instability features appearing on swept wing configurations. In Iutam Symposium on Laminar–Turbulent Transition, Toulouse, France, 1989 Sept. 11–15. (ed. Arnal, D. & Michel, R.), pp. 419430. Springer.Google Scholar
Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35 (4), 363412.Google Scholar
Boltz, F. W., Kenyon, G. C. & Allen, C. Q.1960 Effects of sweep angle on the boundary-layer stability, characteristics of an untapered wing at low speeds. NASA Tech. Rep. TN D-338. NASA Ames Research Center, Moffet Field, CA.Google Scholar
Brandt, L. 2007 Numerical studies of the instability and breakdown of a boundary-layer low-speed streak. Eur. J. Mech. (B/Fluids) 26 (1), 6482.Google Scholar
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.Google Scholar
Brandt, L. & de Lange, H. C. 2008 Streak interactions and breakdown in boundary layer flows. Phys. Fluids 20 (2), 024107.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.Google Scholar
Cumpsty, N. A. & Head, M. R. 1969 The calculation of the three-dimensional turbulent boundary layer Part III. Comparison of attachment-line calculations with experiment. Aeronaut. Q. 20, 99113.Google Scholar
Danks, M. & Poll, D. I. A. 1995 Non-linear instability and transition in flow near a swept leading edge. In IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Manchester, England, 1995 July 17–20. (ed. Duck, P. W. & Hall, P.), vol. 35, pp. 133146. Kluwer Academic.Google Scholar
Denissen, N. A. & White, E. B. 2013 Secondary instability of roughness-induced transient growth. Phys. Fluids 25 (11), 114108.CrossRefGoogle Scholar
Dhanak, M. R. & Stuart, J. T. 1995 Distortion of the stagnation-point flow due to cross-stream vorticity in the external flow. Phil. Trans. R. Soc. Lond. A 352 (1700), 443452.Google Scholar
Dimas, A. A., Mowli, B. M. & Piomelli, U. 2003 Large-eddy simulation of subcritical transition in an attachment-line boundary layer. Comput. Maths Applics. 46 (4), 571589.Google Scholar
Duguet, Y., Schlatter, P., Henningson, D. S. & Eckhardt, B. 2012 Self-sustained localized structures in a boundary-layer flow. Phys. Rev. Lett. 108 (4), 044501.Google Scholar
Emslie, K., Hosking, L. & Marshall, W. S. D.1953 Some experiments on the flow in the boundary layer of a 45 $^{\circ }$ sweptback untapered wing of aspect ratio 4. Tech. Rep. No. 69. The College of Aeronautics, Cranfield.Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.Google Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14 (2), 222224.CrossRefGoogle Scholar
Gaster, M. 1967 On the flow along swept leading edges. Aeronaut. Q. 18, 165184.Google Scholar
Görtler, H. 1955 Dreidimensionale Instabilität der ebenen Staupunktströmung gegenüber wirbelartigen Störungen. In 50 Jahre Grenzschichtforschung. Eine Festschrift in Originalbeiträgen (ed. Görtler, H. & Tollmien, W.), pp. 304314. Vieweg.Google Scholar
Gray, W. E.1952 The nature of the boundary layer flow at the nose of a swept wing. Tech. Rep. RAE-TM-AERO 256. Royal Aircraft Establishment, Farnborough.Google Scholar
Guegan, A., Huerre, P. & Schmid, P. J. 2007 Optimal disturbances in swept Hiemenz flow. J. Fluid Mech. 578, 223232.Google Scholar
Guegan, A., Schmid, P. J. & Huerre, P. 2008 Spatial optimal disturbances in swept attachment-line boundary layers. J. Fluid Mech. 603, 179188.Google Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.Google Scholar
Hall, P. & Malik, M. R. 1986 On the instability of a three-dimensional attachment-line boundary-layer: weakly nonlinear theory and a numerical approach. J. Fluid Mech. 163, 257282.Google Scholar
Hall, P., Malik, M. R. & Poll, D. I. A. 1984 On the stability of an infinite swept attachment line boundary layer. Proc. R. Soc. Lond. A 395 (1809).Google Scholar
Hall, P. & Seddougui, S. O. 1990 Wave interactions in a three-dimensional attachment-line boundary layer. J. Fluid Mech. 217, 367390.Google Scholar
Hämmerlin, G. 1955 Zur Instabilitätstheorie der ebenen Staupunktströmung. In 50 Jahre Grenzschichtforschung. Eine Festschrift in Originalbeiträgen (ed. Görtler, H. & Tollmien, W.), pp. 315327. Vieweg.CrossRefGoogle Scholar
Henniger, R.2011 Direct and large-eddy simulation of particle transport processes in estuarine environments. PhD thesis, no. 19656, ETH Zurich, available online at http://e-collection.library.ethz.ch.Google Scholar
Henniger, R., Obrist, D. & Kleiser, L. 2010 High-order accurate solution of the incompressible Navier–Stokes equations on massively parallel computers. J. Comput. Phys. 229 (10), 35433572.Google Scholar
Herbert, T. 1988 Secondary instability of boundary-layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Hiemenz, K. 1911 Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal 326 (21–26), 321324; 344–348, 357–362, 372–376, 391–393, 407–410.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285 (-1), 6994.Google Scholar
John, M. O.2014 Stability of homogeneous flat-plate boundary layers and attachment-line transition. PhD thesis, no. 22316, ETH Zurich, available online at http://e-collection.library.ethz.ch.Google Scholar
John, M. O., Obrist, D. & Kleiser, L. 2012 An exact Navier–Stokes solution for three-dimensional, spanwise-homogeneous boundary layers. Proc. Appl. Maths Mech. 12 (1), 477478.Google Scholar
John, M. O., Obrist, D. & Kleiser, L. 2014a A class of exact Navier–Stokes solutions for homogeneous flat-plate boundary layers and their linear stability. J. Fluid Mech. 752, 462484.Google Scholar
John, M. O., Obrist, D. & Kleiser, L. 2014b Stabilization of subcritical bypass transition in the leading-edge boundary layer by suction. J. Turbul. 15 (11), 795805.Google Scholar
John, M. O., Obrist, D. & Kleiser, L. 2015 Stabilizing a leading-edge boundary layer subject to wall suction by increasing the Reynolds number. In Procedia IUTAM, Rio de Janeiro, Brazil, 2014 Sept. 8–12, vol. 14, pp. 394401. Elsevier.Google Scholar
John, M. O., Obrist, D. & Kleiser, L. 2016 Secondary instability and subcritical transition in the leading-edge boundary layer. In 10th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation (DLES), Limassol, Cyprus, 2015 May 27–29.Google Scholar
Joslin, R. D. 1995 Direct simulation of evolution and control of three-dimensional instabilities in attachment-line boundary layers. J. Fluid Mech. 291, 369392.Google Scholar
Kachanov, Y. S. & Moreau, S. 1995 Generation, development and interaction of instability modes in swept-wing boundary layer. In Iutam Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Manchester, UK, 1995 July 17–20. (ed. Duck, P. W. & Hall, P.), vol. 35, pp. 115132. Kluwer.Google Scholar
Kuethe, A. M., McKee, P. B. & Curry, W. H.1949 Measurements in the boundary layer of a yawed wing NACA Tech. Rep. TN 1946. National Advisory Committee for Aeronautics, Washington.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (02), 243251.Google Scholar
Lin, R. S. & Malik, M. R. 1996 On the stability of attachment-line boundary layers. Part 1. The incompressible swept Hiemenz flow. J. Fluid Mech. 311, 239255.Google Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Meneghello, G., Schmid, P. J. & Huerre, P. 2015 Receptivity and sensitivity of the leading-edge boundary layer of a swept wing. J. Fluid Mech. 775.Google Scholar
Meyer, F. & Kleiser, L.1989 Fluid dynamics of three-dimensional turbulent shear flows and transition: numerical investigation of transition in 3D boundary layers. Tech. Rep. AGARD CP No. 438. NATO-AGARD, Neuilly-sur-Seine.Google Scholar
Obrist, D.2000 On the stability of the swept leading-edge boundary layer. PhD thesis, University of Washington, Seattle.Google Scholar
Obrist, D., Henniger, R. & Kleiser, L. 2012 Subcritical spatial transition of swept Hiemenz flow. Intl J. Heat Fluid Flow 35, 6167.Google Scholar
Obrist, D. & Schmid, P. J. 2003a On the linear stability of swept attachment-line boundary layer flow. Part 1. Spectrum and asymptotic behaviour. J. Fluid Mech. 493, 129.Google Scholar
Obrist, D. & Schmid, P. J. 2003b On the linear stability of swept attachment-line boundary layer flow. Part 2. Non-modal effects and receptivity. J. Fluid Mech. 493, 3158.Google Scholar
Obrist, D. & Schmid, P. J. 2010 Wave packet pseudomodes upstream of a swept cylinder. In Seventh IUTAM Symposium on Laminar–Turbulent Transition (ed. Schlatter, P. & Henningson, D.), IUTAM Bookseries, vol. 18, pp. 295300. Springer.Google Scholar
Obrist, D. & Schmid, P. J. 2011 Algebraically diverging modes upstream of a swept bluff body. J. Fluid Mech. 683, 346356.Google Scholar
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (04), 689703.CrossRefGoogle Scholar
Owen, P. R. & Randall, D. G.1952 Boundary layer transition on a sweptback wing. Tech. Rep. RAE-TM-AERO 277. Royal Aircraft Establishment, Farnborough.Google Scholar
Park, D. S. & Huerre, P. 1995 Primary and secondary instabilities of the asymptotic suction boundary-layer on a curved plate. J. Fluid Mech. 283, 249272.Google Scholar
Pérez, J. M., Rodríguez, D. & Theofilis, V. 2012 Linear global instability of non-orthogonal incompressible swept attachment-line boundary-layer flow. J. Fluid Mech. 710, 131153.Google Scholar
Pfenninger, W.1965 Flow phenomena at the leading edge of swept wings. Tech. Rep. AGARDograph 97. North Atlantic Treaty Organization – Advisory Group for Aeronautical Research, Paris VII.Google Scholar
Pfenninger, W.1977 Special course on concepts for drag reduction, laminar flow control, laminarization. Tech. Rep. AGARD Report No. 654. NATO-AGARD, Neuilly-sur-Seine.Google Scholar
Poll, D. I. A.1978 Some aspects of the flow near a swept attachment line with particular reference to boundary layer transition. Tech. Rep. 7805. Cranfield Institute of Technology, College of Aeronautics, Cranfield.Google Scholar
Poll, D. I. A. 1979 Transition in the infinite swept attachment line boundary layer. Aeronaut. Q. 30 (Nov.), 607629.Google Scholar
Poll, D. I. A. & Danks, M. 1995 Relaminarisation of the swept wing attachment-line by surface suction. In IUTAM Symposium on Laminar–Turbulent Transition, Sendai, Japan, 1994 Sept. 5–9, vol. 27, pp. 137144. Springer.Google Scholar
Robitaillié-Montané, C.2005 Une approche non locale pour l’étude des instabilités linéaires: application à l’écoulement de couche limite compressible le long d’une ligne de partage. PhD thesis, no. 414, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse, France.Google Scholar
Rosenhead, L. 1963 Laminar Boundary Layers. Clarendon.Google Scholar
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Schubauer, G. B. & Skramstad, H. K.1947 Laminar-boundary-layer oscillations and transition on a flat plate. Tech. Rep. 909. National Advisory Committee for Aeronautics.Google Scholar
Spalart, P. R.1988 Direct numerical study of leading-edge contamination. Tech. Rep. AGARD CP No. 438. NATO-AGARD, Neuilly-sur-Seine.Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 383432.Google Scholar
Theofilis, V. 1993 Numerical experiments on the stability of leading edge boundary layer flow: a two-dimensional linear study. Intl J. Numer. Meth. Fluids 16 (2), 153170.Google Scholar
Theofilis, V. 1998 On linear and nonlinear instability of the incompressible swept attachment-line boundary layer. J. Fluid Mech. 355, 193227.Google Scholar
Theofilis, V., Fedorov, A. V., Obrist, D. & Dallmann, U. C. 2003 The extended Görtler–Hämmerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow. J. Fluid Mech. 487, 271313.Google Scholar
Thomas, C., Hall, P. & Davies, C. 2015 Nonlinear effects on the receptivity of cross-flow in the swept hiemenz flow. J. Fluid Mech. 763, 433459.Google Scholar
Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. Society for Industrial and Applied Mathematics.Google Scholar
Wassermann, P. & Kloker, M. 2003 Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 483, 6789.Google Scholar
White, E. B., Rice, J. M. & Gökhan Ergin, F. 2005 Receptivity of stationary transient disturbances to surface roughness. Phys. Fluids 17 (6).Google Scholar
Wilson, S. D. R. & Gladwell, I. 1978 The stability of a two-dimensional stagnation flow to three-dimensional disturbances. J. Fluid Mech. 84 (Feb), 517527.Google Scholar
Wintergerste, T.2002 Numerische Untersuchung der Spätstadien der Transition in einer dreidimensionalen Grenzschicht. PhD thesis, no. 14590, ETH Zurich, Zürich.Google Scholar
Wintergerste, T. & Kleiser, L. 1995 Visualization of late stages of transition in two-dimensional and three-dimensional boundary layers. In Zeitschrift für angewandte Mathematik und Mechanik – Applied Mathematics and Mechanics (ed. Brommundt, E. & Goerisch, F.), pp. 373374. Akademie Verlag GmbH.Google Scholar