Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T09:25:30.706Z Has data issue: false hasContentIssue false

Scattering of gravity waves by potential vorticity in a shallow-water fluid

Published online by Cambridge University Press:  08 October 2010

MARSHALL L. WARD*
Affiliation:
Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, FL 32306, USA
WILLIAM K. DEWAR
Affiliation:
Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA
*
Present address: Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 Australia. Email address for correspondence: [email protected]

Abstract

The influence of a geostrophically balanced or potential vorticity (PV) containing background flow on the propagation of a coherent gravity wave is examined in a rotating shallow-water model. Over inertial time scales, we find that the gravity wave energy is scattered into other modes of similar wavelength, but with different directions of propagation. We attribute this response to nonlinear resonant interactions between the PV and gravity wave modes, despite the absence of any exchange of energy between the two, and show that the response is consistent with resonant triad theory. We first consider the scattering of a gravity wave mode due to a single PV mode, and compare the theoretical response to numerical solutions. This is followed by consideration of the propagation of a coherent gravity mode through a turbulent PV background. These results are expected to have relevance to the propagation of coherent internal tides in the open ocean.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, M. H., MacKinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 34, L24601.Google Scholar
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 44104428.Google Scholar
Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289, 301320.Google Scholar
Caillol, P. & Zeitlin, V. 2000 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans 32, 81112.Google Scholar
Charney, J. G. 1948 On the scale of atmospheric motions. Geophys. Publ. Oslo 17, 317.Google Scholar
Dewar, W. K. & Killworth, P. D. 1995 Do fast gravity waves interact with geostrophic motions? Deep Sea Res. I 42, 10631081.Google Scholar
Doodson, A. T. 1922 The harmonic development of the tide-generating potential. Proc. R. Soc. Lond. A 100, 305329.Google Scholar
Duffy, D. G. 1974 Resonant interactions of inertial-gravity and Rossby waves. J. Atmos. Sci. 31, 12181231.Google Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasi-manifold: some explicit results. J. Atmos. Sci. 57, 12361254.Google Scholar
Garrett, C. J. R. & Munk, W. H. 1975 Space time scales of internal waves. J. Geophys. Res. 80, 291299.CrossRefGoogle Scholar
Klein, P. & Llewellyn Smith, S. 2001 Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Mar. Res. 59, 697723.Google Scholar
Klein, P., Llewellyn Smith, S. & Lapeyre, G. 2004 Organization of near-inertial energy by an eddy field. Q. J. R. Meteorol. Soc. 130, 11531166.Google Scholar
Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544565.2.0.CO;2>CrossRefGoogle Scholar
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958968.Google Scholar
Lelong, M.-P. & Riley, J. J. 1991 Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.Google Scholar
Lorenz, E. N. 1980 Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 16851691.Google Scholar
Lvov, Y. V., Polzin, K. L. & Tabak, E. G. 2004 Energy spectra of the ocean's internal wave field: theory and observation. Phys. Rev. Lett. 92, 128501.Google Scholar
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett. 32, L15605.Google Scholar
McComas, C. H. & Bretherton, F. P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 13971412.Google Scholar
McComas, C. H. & Müller, P. 1981 The dynamic balance of internal waves. J. Phys. Oceanogr. 11, 970986.2.0.CO;2>CrossRefGoogle Scholar
McIntyre, M. E. & Norton, W. A. 2000 Potential vorticity inversion on a hemisphere. J. Atmos. Sci. 57, 12141235.Google Scholar
Müller, P., Holloway, G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493536.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. I 45, 19772010.Google Scholar
Obukhov, A. M. 1949 On the problem of geostrophic motions (in Russian). Izv. Geogr. Geophys. 13, 281306.Google Scholar
Olbers, D. J. & Pomphrey, N. 1981 Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr. 11, 14231425.Google Scholar
Orszag, S. 1971 On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28, 1074.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.Google Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. J. Fluid Mech. 9, 193217.Google Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.Google Scholar
Rainville, L. & Pinkel, R. 2006 Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 36, 12201236.Google Scholar
Remmel, M. & Smith, L. 2009 New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech. 625, 321359.Google Scholar
Reznik, G. M., Zeitlin, V. & BenJelloul, M. Jelloul, M. 2001 Nonlinear theory of geostrophic adjustment. Part 1. Rotating shallow-water model. J. Fluid Mech. 445, 93120.Google Scholar
Simmons, H. L., Hallberg, R. W. & Arbic, B. K. 2004 Internal wave generation in a global baroclinic tide model. Deep Sea Res. II 51, 30433068.Google Scholar
St.Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.Google Scholar
St.Laurent, L. C. & Nash, J. D. 2004 An examination of the radiative and dissipative properties of deep ocean internal tides. Deep Sea Res. II 51, 30293042.Google Scholar
Waite, M. L. & Bartello, P. 2006 Stratified turbulence generated by internal gravity waves. J. Fluid Mech. 546, 313339.Google Scholar
Warn, T. 1986 Statistical mechanical equilibria of the shallow water equations. Tellus 38A, 111.Google Scholar
Warn, T., Bokhove, O., Shepard, T. G. & Vallis, G. K. 1995 Rossby number expansions, slaving principles and balance dynamics. Q. J. R. Meteorol. Soc. 121, 723739.Google Scholar
Young, W. R. & Ben Jelloul, M. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55, 735766.CrossRefGoogle Scholar